

Grain-SA Smallholder Farmer Innovation Programme

Erna Kruger, Ngcobo P, Dlamini M and Smith H

Learning Conservation Agriculture the Innovation Systems way

CA-Farmer Innovation Programme Key objectives and activities

Stakeholder interaction, partnerships, horizontal and vertical scaling

Awareness raising and Access to Information Farmers days, symposiums, cross visits, conferences, popular articles

Learning groups; practical demonstrations, workshops, field assessments

Education and Training Farmer-centred Innovation System

Farmer experimentation; intercropping, crop rotation, cover crops, livestock integration.

On-farm, farmer-led Research ncentives and Market Based Mechanisms

> Subsidies, Village Saving and Loan Associations, farmer centres, group based access to equipment and infrastructure

Description of IS

- Value chain: Whole value chain considered Bulk buying of inputs; Supply options for tools/equipment; Storage options; Local sales arrangements; Diversification e.g poultry feed rations
- Increase productivity: With a focus on soil health, soil and water conservation, soil fertility, increased production and diversification:
 - - Farmer level experimentation
 - - Researcher managed experimental processes within these; *Run-off plots, infiltration, soil moisture content, local weather station, rain gauges, liming trials*
- **Social agency:** Learning groups, VSLAs, Farmer Centres, Open days...

Farmer level experimentation

Incremental change in yr 1,2,3+

- Year 1: Pre-defined with the research team:
 - Intercropping (maize-legume), close spacing, pre-plant herbicide
 - Choice of planting method; hand hoes, hand planters, animal drawn planters, tractor drawn planters
- Year 2: Choices and options within the same overall design:
 - Different varieties maize (white yellow, OPV, hybrid)
 - Different varieties and types of legumes
 - Summer and winter cover crop combinations
 - Early and late planting
 - Manure and fertilizer combinations
 - Targeted fertility regimes and pest control measures
- Year 3 +: Own design of experiments by participants :
 - Intercropping vs crop rotation options
 - Mulching
 - Organic options
 - Different herbicide and pesticide spray regimes
 - As well as options for year 2.

*Compare CA practices to present practices * Use and improve farmers' observations and analysis

Results-CA study areas

Partners: KZNDARD, LandCare, LMs; Umshwati, Ubuhlebezwe, Okhahlamba, DMs; Umgungundlovu, KwaNalu, StratAct, AWARD, Philakahle, Lima RDF, Siyazisiza

Trial summaries over 5 seasons; Bergville, SKZN and EC

CA Farmer led Trial summaries											
	Midlands	Bergville					EC, SKZ	ZN			
Season	2017	2013	2014	2015	2016	2017	2013	2014	2015	2016	2017
No of villages	6	3	9	11	17	18	4	10	8	8	13
No of trial participants	42	28	83	73	212	259	23	16	43	54	93
Area planted (trials) - ha	1,36	2,8	7,2	5,9	13,5	17,4	0,36	0,3	0,37	1,18	3,58
Average yield maize (t/ha)	2,04	3,74	3,63	4,12	5 <i>,</i> 03	5,7	0,95	0,7	1,37	2,52	2,17
Min and max yield maize											
(t/ha)	0,4-7,1	2-4,3	1-6,7	0,6-7,4	0,3-11,7	0,5-12,2	0,3-1,7	0,3-1,8	0,5-4,4	1,1-5,2	0,2-6,7
Average yield beans (t/ha)	0,62	1,24	0,26	0,79	1,05	1,22	1,26	0,34	0,69	1,28	0,35

Participatory Monitoring & Evaluation

Social, economic, environmental, production

Farmer involvement contracts and baselines, production monitoring forms, yield measurements, focus groups- review, learning, planning, open days, reports

- Social indicators:
 - No of learning groups, VSLAs, farmer experiments, involvement in open days, forums, cooperatives etc, learning, knowledge, changes
- Economic indicators:
 - Food security, livelihoods diversification, incomes, cost of input supplies, cost-benefit analyses(qualitative)
- **Production indicators:**
 - Yields, germination, growth, fertilizer and agrochemical use, weed and pest incidence, crop diversification, soil fertility
- Environmental indicators:
 - Soil health indicators, organic matter, % carbon and nitrogen, water holding capacity and water balances, run-off

Summary of IS indicators after 4 seasons – all areas

Social agency		Value chain		Productivity	
No of female farmers	83%	Saving for inputs	28%	Intercropping – maize and beans	92%
Learning groups	36	Reduced labour in CA plots	78%	Intercropping maize and legumes (cowpeas, lab-lab, velvet bean	17%
VSLAs - % of participants involved	79%	Reduced weeding in CA plots	39%	Crop rotation	20%
Months of food provisioning through small CA plots 10-12 7-9 4-6 1-3	15% 38% 39% 8%	Use of planters Hand hoes Hand planters Animal drawn planters Tractor drawn planters	26% 69% 5% 0,5%	Cover crops; summer mix – sunflower, millet, sunn hemp, sorghum	26%
Sale of crops locally (maize, beans, cowpeas, sunflowers)	10%	Local financing of infrastructure Threshers Mills	1 1	Cover crops; winter mix relay cropping – Saia oats, fodder sorghum, fodder radish	31%
Innovation platforms; including external stakeholders	5	Farmer centres	1	Fodder; provisioning of livestock through cut and carry	5%
				Seed saving	11%

Trends for 4th and 5th year participants

CA principles Social organisation Improved livelihoods Crop Diversification Adaptations

Summary of CA adoption for 4th and 5th season particpants in the Smallholder

Farmer Innovation Programme; Bergville, July 2018

Growing of Cover Crops

For soil health and fodder

- Both summer (SCC) and winter cover (WCC) crop mixes are grown
- SCC; are generally grown as a combination in rotation with other crops- so in 10x10m plots in the trials
- WCC- are generally relay-cropped into the rows between maize once beans have been harvested
- Total land area under cover crops is till quite low; ~1ha respectively
- Progress:
 - Significant improvement in soil health in rotations that include cover crops
 - Keeping of cover crop residues for feeding cattleboth cut and carry and leaving the cover corps in the field for grazing into winter
 - A few individuals around 10 in total have managed to harvest and keep seed from the cover crops, both for purposes of livestock feed (for sunflowers) and for re-planting the following season.

Soil health comparison for 2nd and 4th year participants

- % OM is higher than veld benchmark after 4years, but not 2 years for intercrops and cover crop rotations but not maize only plots
- % Organic C increases; from single crop, through intercrop to cover crops for both 2nd and 4th years
- % Organic N, is higher than veld benchmark after 4 years, but not 2 years
- C:N ratio is lower than the veld benchmark after 4 years
- Soil health scores are higher for 4th year participants
- Savings of around R440/ha after 4 years and R375 after 2 years; 14% and 12% of overall fertilizer costs saved

Crop diversity is crucial

Crop rotation in combination with crop diversity supports this process

Lab-Lab and SCC provide for very high organic C and N values

Lower C:N ratios are found in crop mixes that contain legumes – cowpeas, Lab-Lab

Soil Health Summary

 Intercropping and use of cover crops is very important for building soil fertility and soil health

 Crop rotation aids in stabilising high soil health scores over time

• The more crops you use and rotate the better

Having legumes in the mix speeds up the process

In summary: CA is increasing yields, improving livelihoods and improving soil quality for around 550 smallholder farmers in KZN &EC

