

Water Research Commission

Project Number:

к5/2719/4

Project Title: Collaborative knowledge creation and mediation strategies for the dissemination of Water and Soil Conservation practices and Climate Smart Agriculture in smallholder farming systems.

Deliverable No.4: Report- CoPs and Demonstration Sites Established Date: May 2018

Submitted to: Dr Gerhard Backeberg Executive Manager: Water Utilisation in Agriculture Water Research Commission Pretoria

Prepared By: Project team led by Mahlathini Development Foundation. Submitted to: Executive Manager: Water Utilisation in Agriculture Water Research Commission Pretoria

Project team: Mahlathini Development Foundation Erna Kruger Sylvester Selala Mazwi Dlamini Khethiwe Mthethwa Temakholo Mathebula Institute of Natural Resources NPC Jon McCosh Rural Integrated Engineering (Pty) Ltd Christiaan Stymie Rhodes University Environmental Learning Research Centre Lawrence Sisitka

CONTENTS

FIGURES	4
TABLES	4
1 OVERVIEW OF PROJECT AND DELIVERABLE	5
Contract Summary	5
Project objectives	5
Deliverables	5
Overview of Deliverable 4	6
2 Cops and demonStration sites established	8
3 CSA practices	8
3.1 Further practices suggested by local farmers	17
4 Outcomes of CC dialogues (Workshop 1): Definitions, changes, present activities,	
impacts	17
4.1 Overview	17
4.2 Impacts of CC on livelihoods and farming	18
5 Potential adaptive measures	19
6 Continuation of CC dialogues (Workshop 2): Potential adaptive measures,	15
prioritisation of practices and experimentation planning	22
6.1 Ezibomvini (KZN) CCAworkshop 2	25
6.2 Alice (Eastern Cape) CCA Workshop	29
7 Baseline information	32
7.1 Household level questionnaires	32
7.2 Farmer typologies	35
7.2.1 Scale of operation	42
7.3 Walkabouts 7.3.1 Tabamhlophe	43 43
7.3.1 Tabamhlophe 7.3.2 Ezibomvini	43 44
Case Study GrainSA SFIP: Conservation Agriculture builds a better life for Mrs Phumelele	44
	45
Hlongwane (Bergville)	45
Conservation Agriculture Experimentation Yield results	47 47
Run-off results	47
7.3.3 Mvuso (Alice) EC	51
8 Community level prioritization of Practices for Experimentation	52
8.1 Collaborative activities in learning groups	60
8.1.1 Experimentation with vegetable production and tunnels	61
8.2 Individual experimentation	62
8.2.1 Conservation Agriculture experimentation- Limpopo	62
8.2.2 Tunnel and gardening experimentation _KZN- Ezibomvini	65
9 Capacity building and publications	67
9.1 Community level learning	67
9.2 Organisational capacity building	67
9.3 Post graduate students	67
9.3.1 Sanelise Tafa:	68
9.3.2 Khethiwe Mthethwa:	70
9.3.3 Mazwi Dlamini	73
9.3.4 Palesa Motaung	75
9.4 Publications and networking	80

FIGURES

Figure 1: The Smallholder decision support system process	32
Figure 2:Baseline information for CCA workshop participants	34
Figure 3: Household, scale of farming and income information for CCA participants	35
Figure 4: CA trial layout for Koko Maphori's field (Plots highlighted in brown is where runoff plots	have
been installed)	65

TABLES

Table 1: Deliverables for the research period; completed5
Table 2: CoPs' established in three provinces
Table 3: Summary of climate change impacts from community level workshops 18
Table 4: An example of potential adaptive measures from the Turkey (Limpopo) climate change
dialogue process19
Table 5: An example of potential adaptive measures from the Thamela (KZN)) climate change dialogue
process
Table 6: An example of potential adaptive measures from the Sekororo (Limpopo) climate change
dialogue process
Table 7: 2 nd CC workshop agenda outline
Table 8:Climate change dialogues; workshops 1 and 224
Table 9: Suggested practices for farmers, categorised into the 5 primary themes
Table 10: Individual volunteers for trench bed experimentation in KZN (Bergville)
Table 11:CSA Practices: Prioritization by groups and individuals 29
Table 12: Farmer segmentation in the Bergville smallholder farming system
Table 13: Baseline information related to incomes
Table 14: Farmer typology for the WRC-CCA process 40
Table 15:Summary of scale of operation for present participants in the WRC-CCA process
Table 16 : Participants in quantitative measurements for trials; KZN and Limpopo60
Table 17: Participants in the individual CA farmer experimentation in Limpopo 62
Table 18: Individual experimentation with trench beds, mixed cropping and mulching for the
Ezibomvini Learning Group

Report- CoPs and demonstration sites established

1 OVERVIEW OF PROJECT AND DELIVERABLE

Contract Summary

Project objectives

- 1. To evaluate and identify best practice options for CSA and Soil and Water Conservation (SWC) in smallholder farming systems, in two bioclimatic regions in South Africa. (Output 1)
- 2. To amplify collaborative knowledge creation of CSA practices with smallholder farmers in South Africa (Output 2)
- 3. To test and adapt existing CSA decision support systems (DSS) for the South African smallholder context (Outputs 2,3)
- 4. To evaluate the impact of CSA interventions identified through the DSS by piloting interventions in smallholder farmer systems, considering water productivity, social acceptability and farm-scale resilience (Outputs 3,4)
- 5. Visual and proxy indicators appropriate for a Payment for Ecosystems based model are tested at community level for local assessment of progress and tested against field and laboratory analysis of soil physical and chemical properties, and water productivity (Output 5)

Deliverables

No	Deliverable	Description	Target date
FINA	ANCIAL YEAR 2017/2018		
1	Report: Desktop review of CSA and WSC	Desktop review of current science, indigenous and traditional knowledge, and best practice in relation to CSA and WSC in the South African context	1 June 2017
2	Report on stakeholder engagement and case study development and site identification	Identifying and engaging with projects and stakeholders implementing CSA and WSC processes and capturing case studies applicable to prioritized bioclimatic regions Identification of pilot research sites	1 September 2017
3	Decision support system for CSA in smallholder farming developed (Report)	Decision support system for prioritization of best bet CSA options in a particular locality; initial database and models. Review existing models, in conjunction with stakeholder discussions for initial criteria	15 January 2018
FINA	ANCIAL YEAR: 2018/2019		
4	CoPs and demonstration sites established (report)	Establish communities of practice (CoP)s including stakeholders and smallholder farmers in each bioclimatic region.5. With each CoP, identify and select demonstration sites in each bioclimatic region and pilot chosen collaborative strategies for introduction of a range of CSA and WSC strategies in homestead farming systems (gardens and fields)	1 May 2018
5	Interim report: Refined decision support system for CSA in smallholder farming (report)	Refinement of criteria and practices, introduction of new ideas and innovations, updating of decision support system	1 October 2018
6	Interim report: Results of pilots, season 1	Pilot chosen collaborative strategies for introduction of a range of CSA and WSC strategies, working with the CoPs in each site and the decisions support system. Create knowledge mediation productions,	31 January 2019

Table 1: Deliverables for the research period; completed

		manuals, handouts and other resources necessary for learning and	
		implementation.	
	NCIAL YEAR 2019/2020		
7	Report: Appropriate quantitative measurement procedures for verification of the visual indicators.	Set up farmer and researcher level experimentation	1 May 2019
8	Interim report: Development of indicators, proxies and benchmarks and knowledge mediation processes	Document and record appropriate visual indicators and proxies for community level assessment, work with CoPs to implement and refine indicators. Link proxies and benchmarks to quantitative research to verify and formalise. Explore potential incentive schemes and financing mechanisms. Analysis of contemporary approaches to collaborative knowledge creation within the agricultural sector. Conduct survey of present knowledge mediation processes in community and smallholder settings. Develop appropriate knowledge mediation processes for each CoP. Develop CoP decision support systems	1 August 2019
9	Interim report: results of pilots, season 2	Pilot chosen collaborative strategies for introduction of a range of CSA and WSC strategies, working with the CoPs in each site and the decisions support system. Create knowledge mediation productions, manuals, handouts and other resources necessary for learning and implementation.	31 January 2020
FINA	NCIAL YEAR 2020/2021		
10	Final report: Results of pilots, season	Pilot chosen collaborative strategies for introduction of a range of CSA and WSC strategies , working with the CoPs in each site and the decisions support system. Create knowledge mediation productions, manuals, handouts and other resources necessary for learning and implementation.	1 May 2020
11	Final Report: Consolidation and finalisation of decision support system	Finalisation of criteria and practices, introduction of new ideas and innovations, updating of decision support system	3 July 2020
12	Final report - Summarise and disseminate recommendations for best practice options.	Summarise and disseminate recommendations for best practice options for knowledge mediation and CSA and SWC techniques for prioritized bioclimatic regions	7 August 2020

Overview of Deliverable 4

The design of the decision support system is seen as an ongoing process divided into three distinct parts:

- Practices: Collation, review, testing, and finalisation of those CSA practices to be included. Allows for new ideas and local practices to be included over time. This also includes linkages and reference to external sources of technical information around climate change, soils, water management etc and how this will be done;
- Process: Through which climate smart agricultural practices are implemented at smallholder farmer level. This also includes the facilitation component, communities of practice, communication strategies and capacity building and
- Monitoring and evaluation: local and visual assessment protocols for assessing implementation and impact of practices as well as processes used. This also includes site selection and quantitative measurements undertaken to support the visual assessment protocols and development of visual and proxy indicators for future use in inactive based support schemes for smallholder farmers

Activities in this four month period have included:

- Continuation of implementation of the CCA introduction workshops (workshop 1) in KZN (Ezibomvini _18-19 Jan 2018 and EC, Alice_13-15 Feb 2018);

- Initiation of collaborative activities in 6 villages (KZN and Limpopo): Tunnels and drip kits (Thabamhlophe, Ezibomvini, Eqeleni_29-31 Jan 2018 Sedawa, Lourene, Turkey_9-12 April 2018); CSA gardening practices (Turkey_ Jan, March 2018)
- Team planning meeting; including training of trainers (16 March 2018)_ Outline and planning for CCA workshop 2 (Prioritization of practices)
- Implementation of CCA Workshop 2 in 3 villages (KZN and EC): Ezibomvini (22,23 March 2018), Thabamhlophe (17-18 April 2018), Alice (16-17 April 2018).
- Dialogues in climate change adaptation- including prioritization of practices Limpopo (13-15 March 2018)
- Visual and descriptive outlines of all practices in the database; Attached as a separate document
- Set up of sites for quantitative measurements: KZN field sites (Ezibomvini, Eqeleni, Mhlwazini); garden site (Ezibomvini), Limpopo - field sites (Sedawa, Mametje, Botshabelo) garden site (Sedawa); weather stations, run-off plots, gravimetric water sampling, soil health sampling, soil fertility sampling, chameleon water sensors.
- Capacity building and publications:
 - Research presentations and chapters:
 - Khethiwe Mthethwa Agric Honours(UKZN -Completed cum laude);Investigating the sustainability of adoption of conservation agriculture by small-scale farmers in Bergville, Dec 2017),
 - Mazwi Dlamini M Phil (PLAAS UWC-yr 2); completed proposal and research methodology
 - Palesa Motaung- M Agric (UP- yr 2); completed proposal and research methodology
 - Newsletter articles: Adaptation Network newsletter, SA Grain Newsletter, African Farming.Com - Feature
 - Rangeland learning exchange visit (UCPP_6-8 Feb 2018), Regenerative Agriculture
 - Conference-Reitz (GrainSA and Landbouweekblad_19-20 March 2018).

2 COPS AND DEMONSTRATION SITES ESTABLISHED

Table 2: CoPs' established in three provinces

Province	Site/Area;	Demonstration	CoPs	Collaborative strategies
	villages	sites		
KZN	Tabamhlophe	 1st CC workshop Collaborative strategies: -2nd CC workshop 	-Farmers w NGO support (Lima RDF)	- Tunnels and drip kits - Individual experimentation with basket of options
	Ezibomvini/ Thamela, Eqeleni	 1st CC workshop Collaborative strategies 2nd CC workshop 	-CA open days, cross visits (LandCare, DARD, ARC, GrainSA), LM Agric forums,	 Tunnels (Quantitative measurements CA farmer experimentation (Quantitative measurements) case studies Individual experimentation with basket of options
Limpopo	Mametja (Sedawa, Turkey,	 1st CC workshop 3rd DICLAD workshop Collaborative strategies: 	-Agroecology network (AWARD/MDF)	 Tunnels (Quantitative measurements CA farmer experimentation (Quantitative measurements) case studies Individual experimentation with basket of options
	Tzaneen (Sekororo - Lourene)	 - 1st CC workshop - Collaborative strategies 		-Tunnels and drip kits
EC	Alice/Middledrift area	- 1 st CC workshop -2 nd CC workshop	Imvotho Bubomi Learning Network (IBLN) - ERLC, Fort Cox, Farmers, Agric Extension services, NGOs	-Individual and collaborative experimentation with basket of options

3 CSA PRACTICES

A little more work was done on the practices database, providing for a focus on the Agroforestry and Livestock management options and coming up with the first ideas around these two important farming system processes.

Category	Area	Type of practice	Practice	Description	Farming resource that is targeted				
					Water	Soil	Crop	Livestock	Natural res
Water Management	Manage available water	irrigation	drip irrigation	Also called trickle or micro irrigation applying water slowly and directly to the roots of plants through small plastic pipes and flow control devices. Emitters are integral to the functioning where turbulent flow prevent clogging to a large degree.	3	2	2	1	1
Water Management	Manage available water	manage evaporation ,temperature	shade cloth tunnels	Shade cloth structures (40% grey) assist in managing water through reduced evaporation, temperature and pest incidence	3	2	2	1	1
Water Management	Manage available water	irrigation	furrows and ridges/ furrow irrigation	Furrow irrigation is a method of applying water at a specific rate of flow into shallow, evenly spaced, u- shaped channels from the top end of the furrow. Flow occurs because of gravity and the amount of water applied is dependent on soil type, gradient, flow rate, evenness and the number of previous applications.	3	2	2	1	1
Water Management	Manage available water	improved water retention	mulching	Soil cover refers to vegetation, including crops, and crop residues on the surface of the soil, covering ideally the projected surface area of crop roots.	2	2	3	1	1
Water Management	Manage available water	improved water retention	improved organic matter (manure and crop residues)	Increased organic matter enhances the water holding capacity of sandy soils, while it improves the drainage of clayey soils.	3	2	2	1	1
Water Management	Manage available water	irrigation	Greywater management	Irrigation practices involving greywater, including pre-treatment with ash or using sand filters. Specific bed designs for greywater include tower gardens and keyhole beds.	3	1	2	1	1
Water Management	Manage available water	control erosion, water harvesting	Diversion ditches	Channel or furrow made across the main slope with its ridge on the downhill side	3	2	1	1	1

Water Management	Manage available water	control erosion	Grass water ways	Shaped or graded channels with suitable vegetation, designed to intermittently carry surface water runoff at non-erosive velocities to stable outlets.	2	3	2	1	1
Water Management	Increase available water	water harvesting, soil fertility	infiltration pits / banana circles	0.7m-1.5m deep pits/basins dug in water flow lines to control water movement and filled with organic matter for improved soil fertility. Various planting regimes including bananas	3	2	3	1	1
Water Management	Increase available water	water harvesting	rain water harvesting	The collection of run off from rain, roof and other surfaces for productive use in and outside the field. Both infield and storage options are available	3	2	2	1	1
Water Management	Increase available water	water harvesting	tied ridges	Increases the water availability by collecting rainfall from an unplanted sloping basin and catching it with a furrow and ridge. Planting takes place on either side of the furrow where the water has infiltrated.	3	2	2	1	1
Water Management	Increase available water	water harvesting, soil erosion control	Half moon basins	These are small semi circular earth bunds for catching water flowing down a slope	3	2	2	1	1
Water Management	Increase available water	water harvesting	small dams	2m-5m deep pond constructed to catch water during the rainy season with a clay core, a wall (for larger earth dams) and a spillway to let go off excess water	3	2	2	1	1
Soil Management	Control soil movement	control erosion	Contours; ploughing and planting	Ploughing and or planting along the contours of the land in order to minimize soil erosion. Can use line levels, A-frames, dumpy levels etc to mark contours	2	3	2	1	1
Soil Management	Control soil movement	control erosion	gabions	Rectangular baskets fabricated from a hexagonal mesh of heavily galvanized iron, filled with stones/ gravel for erosion control steel wire filled with rock and stacked atop one another to form a gravity type wall.	2	3	2	1	1
Soil Management	Control soil movement	control erosion, water harvesting	Stone bunds	Used along contour lines to slow down, filter and spread out runoff water, thus increasing infiltration and reducing soil erosion.	2	3	2	1	1

Soil Management	Control soil movement	control erosion, water harvesting	check dams	These are small dams constructed across a drainage ditch, or waterway to counteract erosion by reducing water flow velocity and allowing sedimentation of silt.	2	3	2	1	1
Soil Management	Control soil movement	control erosion, water harvesting	Swales	Swales are ditches and bunds constructed on contour to manage water flow and sedimentation. Mulching and planting occurs in both the ditch and on the bunds	2	3	3	1	1
Soil Management	Control soil movement	control erosion, water harvesting	Zai pits	Hand dug 0.6m diameter and 0.3m deep circular holes that collect and store water for crop use	3	2	3	1	1
Soil Management	Control soil movement	control erosion, water harvesting	Terraces	A terrace is a level strip of soil built along the contour of a slope and supported by an earth or stone bund, or rows of old tyres for example	2	3	2	1	1
Soil Management	Control soil movement	control erosion, water harvesting	Stone packs	Like gabions and check dams these are constructed across gulleys or water flow paths to control erosion, slow surface water flow rate and promote sedimentation	2	3	2	1	1
Soil Management	Control soil movement	control erosion, crops, livestock, natural resources	Strip cropping	Strip cropping is a strategy for subdividing single fields on slopes into strips that follow contours; where different crops are planted; a mixture of annual and perennial crops are usually used.	2	3	3	2	1
Soil Management	Control soil movement	control erosion	Pitting	Pitting is carried out in large fields or areas prone to sheet and wind erosion where the whole area is imprinted with small pits- into which sediment and seeds can be blown for germination when it rains.	2	3	2	2	2
Soil Management	Control soil movement	control erosion, soil fertility	Woodlots for soil reclamation	Trees planted in an eroded area will assist with recuding the flow rate of surface water and thus help to prevent further erosion.	1	3	1	1	3
Soil Management	Improve soil fertility	soil nutrients	Targeted application of small quantities of fertilizer, lime etc	Use of site specific fertilizer recommendation and more efficient use of fertilizer (using the right, source, at right time, at right place and applying the right rate), liming to manage soil acidity (surface liming and incorporation).	2	1	3	1	1

Soil Management	Improve soil fertility	soil nutrients	Liquid manures	Brews are made of animal and plant matter as liquid supplements to soil fertility,	1	1	3	1	1
Soil Management	Improve soil fertility	soil nutrients, livestock fodder	Woody hedgerows for browse, mulch, green manure, soil conservation	Growing leguminous tree shrubs in narrow strips across the slope and material used a green manure	1	2	3	2	2
Soil Management	Improve soil fertility and health	manage water, control erosion and soil health, crops, livestock	Conservation Agriculture	Three main principles of minimal soil disturbance (no ploughing), soil cover (stover, mulching and cropping patterns) and diversity (inter cropping, relay cropping and cover crops) upheld in the field cropping system	2	2	3	2	2
Soil Management	Improve soil fertility and soil health	soil nutrients	Planting legumes, manure, green manures	Use of legumes , manures (improved) and green manures in specific combinations to improve soil fertility and soil health.	1	2	3	1	1
Soil Management	Improve soil fertility and soil health	soil nutrients, crops	Mixed cropping	Managing soil health and pest and disease incidence through crop combinations; mixed cropping, inter cropping, crop rotation	1	2	3	2	1
Soil Management	Improve soil fertility and soil health	soil nutrients, crops	Herbs and multifunctional plants	Managing soil health and pest and disease incidence through crop combinations; using herbs and multifunctional plants - including windbreaks, trap cropping, pest deterrents, bee fodder etc	1	2	3	2	1
Soil Management	Improve soil fertility and health	soil nutrients, crops, livestock	Agroforestry options (multipurpose, fast growing trees and fodder species)	Land use management system in which trees or shrubs are grown around or among crops or pastureland	2	2	3	3	1
Soil Management	Improve soil fertility and health	soil nutrients, crops	Bed design; trench beds, eco circles	Intensive beds dug out and filled with a range of organic matter (dry, wet manure, bones, ash etc) to provide for highly fertile beds with high water holding capacity - e.g. trench beds, shallow trenches, eco-circles	2	2	3	1	1
Soil Management	Improve soil fertility and health	soil nutrients, crops	Understand soil health aspects using visual indicators	Using visual indicators for soil type, soil aggregates, porosity, soil mottles, infiltration etc can assist in planning appropriate soil management structures	1	3	2	1	1

Crop Management	Crop management	Diversification	crop diversification	Addition of new crops to the production system, to fix nitrogen for example.	1	2	3	1	1
Crop Management	Crop management	Pest management (incl weeds)	push-pull technology	Approach in pest management which uses a repellent intercrop and an attractive trap plant	1	1	3	1	1
Crop Management	Crop management	Pest management (incl weeds)	Natural pest and disease control	This is an ecologically based aproach to managing pests and diseases including chemical, boilogical and other regulatory means	1	1	3	1	1
Crop Management	Crop management	Pest management (incl weeds)	Integrated weed management	The use of a combination of weed control practices thus reducing dependency on any one type of control. This includes practices such as close spacing, late season weeding for weeding weeds, soil health management (structure and porosity), composting etc	1	1	3	1	1
Crop Management	Crop management	Improve crop variety	Breeding improved varieties (early maturing, drought tolerant, improved nutrients),	Improve varieties can be more productive, grow in drier years and potentially make better use of nutrients	1	1	3	1	1
Crop Management	Crop management	Improve crop variety	OPV and heirloom varieties	OPV's are seeds where pollination occurs by insect, bird, wind, humans, or other natural mechanisms. Heirloom variety is a plant variety that has a history of being passed down within a family or community	1	1	2	1	1
Crop Management	Crop management	Seed saving	Seed saving	The practice of saving seeds or other reproductive material (e.g. tubers) from vegetables, grain, herbs, and flowers for use from year to year for annuals	1	1	2	1	1
Crop Management	Crop management	Crop rotation	Crop rotation	A series of different crops planted in the same field following a defined order to improve soil health and to prevent the build-up of soil related diseases.	1	2	3	2	1
Crop Management	Crop management	Crops natural resources	Windbreaks	Hedges as shelterbelts and wind breaks in wind prone areas; can use multipurpose indigenous species that also assist in erosion control	1	2	2	1	2

Livestock Management	Integrated crop- livestock management	Integrated systems	Trees and bushes lining fish ponds for optimal pond conditions and fish "browsing"	Trees and shrubs are planted on the edge of the pond to prevent trampling by cattle. Watering points need to be provided if the pond is used for stock watering.	3	1	2	2	1
Livestock Management	Integrated crop- livestock management	Honey	Trees suitable for honey production	Trees suitable for honey production could be planted on field edges and unused areas.	1	1	2	1	2
Livestock Management	Integrated crop- livestock management	Protein rich trees	Production of protein-rich tree fodder on farm/rangelands for cut- and-carry fodder production	Protein rich trees like tree Lucerne could enhance the grazing capacity and assist with soil protection	1	2	2	3	2
Livestock Management	Integrated crop- livestock management	Woodlots	Woodlots for timber, fodder, soil protection, soil reclamation	Appropriate trees planted in an eroded area will assist with reducing the flow rate of surface water and thus help to prevent further erosion. It will also enhance the soil fertility because of the falling leaves.	1	2	2	2	1
Livestock Management	Integrated crop- livestock management	Improved fallow	Woodly legumious crops planted and left to grow during fallow phase to improve fallow	Deliberate planting of leguminous species primarily for fixing nitrogen as part of crop fallow and rotation and secondarily for livestock fodder	1	2	3	3	2
Livestock Management	Integrated crop- livestock management	Shade	Trees planted for shading crops or animals	A plantation of one or more rows of trees for shading purposes. This can enhance the production of dairy cows significantly - if the waiting area is fully shaded.	1	1	1	3	1
Livestock Management	Integrated crop- livestock management	Broilers	Small scale broiler production	Grow broilers in naturally ventilated houses made of iso-wall panels. Free range optional	1	1	1	3	1
Livestock Management	Integrated crop- livestock management	Layers	Small scale egg production	Produce eggs in naturally ventilated houses made of iso-wall panels. Free range optional	1	1	1	3	1

Livestock Management	Integrated crop- livestock management	Dairy	Small scale milk production	Good quality cows are milked by hand or a simple mechanised system. A shade cloth structure is provided for the waiting area to cool cows down before milking. Evaporative cooling can also be utilised.	1	1	1	3	1
Livestock Management	Integrated crop- livestock management	Beef	Small scale intensive cattle farming	Good quality cattle are kept in a partly shaded area where they are fed the normal feedlot fodder with added fodder grown on the farm. The purpose is to enhance the condition of cattle before selling.	1	1	1	3	1
Livestock Management	Integrated crop- livestock management	Goats	Small scale goat production	Hardy goats are grown for meat and other products like hair.	1	1	1	3	1
Livestock Management	Integrated crop- livestock management	Stall feeding	Stall feeding	Feed animals in stalls to reduce energy requirements seeking out grazing; links to agroforestry systems, fallows and improved pastures	1	1	1	3	1
Livestock Management	Integrated crop- livestock management	Creep feeding	Creep feeding	In cases where young livestock do not have adequate access to fodder, or are 'bullied' by older animals, enclosures that are only accessible to younger animals (i.e. small entrances) can be built. High quality fodder is placed in the enclosure that younger animals can feed on.	1	1	1	3	1
Livestock Management	Integrated crop- livestock management	Alternative fodder crops	Cultivation of alternative fodder crops	Use of high value or productive fodder crops (e.g. legumes, napier fodder, improved pastures)	1	1	2	3	2
Livestock Management	Integrated crop- livestock management	Supplementary feeding	Haymaking	Drying, and storage of surplus fodder for winter feeding - often made from high value / high protein fodder crops	1	1	1	3	1
Livestock Management	Integrated crop- livestock management	Harvesting and relocating nutrients	manure harvesting	The collection of manure from stall-fed animals or animals kept in kraals as a fertiliser for crops	1	2	3	2	1

Livestock Management	Veld management systems	Rotational resting	Resting camps for a full growing season	Rotational resting is the practice of excluding a selected area (usually one quarter of the grazing area) from grazing for a full growing season to allow for the recovery of a grassland - has ecological and livestock productivity benefits	1	1	1	3	3
Livestock Management	Veld management systems	Even utilisation	Even utilisation	Introducing systems that prevent a concentration of grazing close to the homesteads where grazing pressure is highest. Usually requires introduction of herders.	1	1	1	3	3
Livestock Management	Veld management systems	Fire	Fire	Application of fire to remove moribund material and improve veld condition. A spring burn after the first spring rains provides an opportunity to improve veld condition.	1	1	1	3	3
Livestock Management	Veld management systems	Supplementary feeding	Protein licks	Protein licks provide supplements to livestock which allow them to make effective use of low value grazing in the winter months.	1	1	1	3	3
Livestock Management	Veld rehabilitation	De bushing and over sowing	De-bushing and over sowing	The practice of controlling alien invader plants and encroaching indigenous plants to allow grazing to re- establish	1	1	1	3	3
Livestock Management	Veld rehabilitation	Rangeland reinforcement	Rangeland reinforcement	The practice of sowing productive pasture / fodder species into grasslands. Best practice is to introduce these species into old lands, which are degraded.	1	1	1	3	3
Livestock Management	Veld rehabilitation	Bioturbation	Bioturbation	Hoof trampling (a form of "bioturbation") assists with 'kick starting' recovery of grassland on these rangelands, through breaking up capped impermeable soil surface, and depositing nutrients and grass seed in manure	1	1	1	3	3

3.1 Further practices suggested by local farmers

The practices mentioned below are to be added into the database of practices

- Spring protection
- Biogas digesters
- Different seed varieties
- Planting calendars
- Drought tolerant and bird resistant varieties
- Lizard hotel
- More on greywater management

4 OUTCOMES OF CC DIALOGUES (WORKSHOP 1): DEFINITIONS, CHANGES, PRESENT ACTIVITIES, IMPACTS

Initial Climate Change dialogues, to explore concepts of climate change, the impacts on peoples' lives and farming activities and to start discussions on potential adaptive strategies in these communities have been undertaken for 7 villages across three provinces. Full reports for a number of these workshops are attached in Appendices 2-5.

Here a summary of some of the outcomes and discussions will be provided.

4.1 Overview

It can be considered that farmers always complain about the weather; especially those reliant on the weather for crop and livestock production. This meant that our first topic revolved around the differences between general weather variability and climate change. This was achieved through role plays, slide shows and discussions.

The situation differs across the provinces:

- In Limpopo; there was consensus among participants that it is generally hotter throughout the whole year than it was in the past (10 years ago) and that they are receiving less rain than before. They feel that the impact of the recent drought has been a lot more severe because of these conditions.
- In KZN; farmers are aware of changes in rainfall patterns. They experience more extreme events (storms, high winds and hail) than before. Temperature variability has also increased with cold weather at unexpected times, snow both earlier and later than usual in the season and excessive heat in spring, summer and autumn.
- In the EC; farmers are aware of changes in rainfall patterns. They experience more extreme events (storms, high winds and hail) than before. They feel that winters are colder than before. There is greater temperature variability from day to day than before.

4.2 Impacts of CC on livelihoods and farming

These impacts were first discussed in general terms, then reviewed in terms of comparing the past present and future and then interrogated using the impacts mind mapping process. The table below outlines a summary of impacts mentioned for each province

Climate ch	ange impacts on livelihood	ls and farming		
	KZN	EC	Limpopo	
Water	Less water in the landscape;	Less water in the landscape;	Less water in the landscape;	
	streams and springs dry up,	streams and springs dry up,	streams and springs dry up,	
	borehole run dry, soils dry	borehole run dry, soils dry	borehole run dry, soils dry	
	out quickly after rain	out quickly after rain	out quickly after rain	
	Dams dry up	Dams dry up	Dams dry up	
	Municipal water supply	Municipal water supply	Municipal water supply	
	becoming more unreliable	becoming more unreliable	becoming more unreliable;	
			Need to buy water for	
			household use – now	
			sometimes for more than 6	
			months of the year	
			RWH storage only enough for	
			household use.	
Soil	More erosion	More erosion	More erosion	
	Soils becoming more	Soils becoming more	Soils becoming more	
	compacted and infertile	compacted and infertile	compacted and infertile	
			Soils too hot to sustain plant	
			growth	
Cropping	Timing for planting has	Timing for planting has	Can no longer plant dryland	
	changed- later	changed- later	maize	
			All cropping now requires	
			irrigation – even crops such	
			as sweet potato	
			Drought tolerant crops such	
			as sorghum and millet grow=-	
			but severe bird damage	
	Heat damage to crops	Heat damage to crops	Heat damage to crops	
	Reduced germination and	Reduced germination and	Reduced germination and	
	growth	growth	growth	
	Seeding of legumes	Seeding of legumes	Seeding of legumes becoming	
	becoming unreliable	becoming unreliable	unreliable	
	Lower yields	Lower yields	Lower yields	
			Winter vegetables don't do	
			well - stress induced bolting	
			and lack of growth	
	More pests and diseases	More pests and diseases	More pests and diseases	
	Loss of indigenous seed		Loss of indigenous seed	
	stocks		stocks	
Livestock	Less grazing; not enough to	Less grazing; not enough to	Less grazing; not enough to	
	see cattle through winter	see cattle through winter	see cattle through winter	
	More disease in cattle and	More disease in cattle and	More disease in cattle and	
	heat stress symptoms	heat stress symptoms	heat stress symptoms	
	Fewer calves	Fewer calves	Fewer calves	
	More deaths	More deaths	More deaths	

Table 3: Summary of climate change impacts from community level workshops

Natural	Fewer trees; too much	Fewer trees; too much	Fewer trees; too much		
resources	cutting for firewood	cutting for firewood	cutting for firewood		
	Decrease in wild animals	Decrease in wild animals	Decrease in wild animals and		
	and indigenous plants	and indigenous plants	indigenous plants		
	Increased crop damage from	Increased crop damage from	Increased crop damage from		
	wild animals such as birds	wild animals such as birds	wild animals such as birds		
	and monkeys	and monkeys	and monkeys		
	Availability of indigenous		No longer able to harvest any		
	vegetables has decreased		resources due to scarcity		
			Increased population puts		
			pressure on resources		
Social	More diseases	More diseases	More diseases		
	Increased poverty and	Increased poverty and	Increased poverty and		
	hunger	hunger	hunger		
	Increased crime and	Increased crime and	Increased crime and reduced		
	reduced job opportunities	reduced job opportunities	job opportunities		
			Increased food prices		
			Increased conflict		
			Inability to survive		

Although many of the impacts are similar across the three provinces, the severity of these changes are a lot more obvious in Limpopo. Where comments like "we will all die", "we will need to move from here to the cities" and "it feels like the end of the world is coming" were not uncommon.

In all the provinces, but more so in KZN and Limpopo people felt that they are being punished by God for the disintegration of their social fabric. They mentioned that people no longer follow the old rules or keep to their traditional beliefs and taboos, people do not care properly for their families and immorality, violence and theft are all too common. There is thus a tacit understanding that these social problems exacerbate their ability to survive well into the future.

5 POTENTIAL ADAPTIVE MEASURES

These were discussed as an outcome of the impact mind map and participants discussed in small groups possible practices and ideas which could help them adapt to the changes and reduce the negative impacts of these changes.

Being practically minded, most of the participants moved straight from impacts to practices – so strategies were not really discussed. Some of the groups had many ideas, some of which were gleaned from working with support organisations and NOGs. Those groups where no external support is available, such as Thamela (KZN) did not have many 'new" ideas, but focussed more on doing what they are currently doing better.

Below are two examples of this discussion:

- for the Sedawa extension village Turkey in Limpopo (with limited external support)
- for Thamela in Bergville (where participants were in doubt as to whether CC exists and have received very limited external support)

 Table 4: An example of potential adaptive measures from the Turkey (Limpopo) climate change dialogue process

 Turkey CC workshop; December 2017

Impacts	Description and linkages	Outcomes	Potential adaptive measure
GROUP 1			
Reduced water availability	Dams dry out, boreholes provide less water, rivers dry out, less rain	Reduced production, hunger, diseases, no jobs, poverty,	More boreholes, more dams, water management, irrigation in evenings and early morning, mulching, trench beds (keep moisture in and soil cool)
Drying of environment	Soils are hotter and drier, drought, plants wilt, increased pests	crime, death	Save plant residues for animals, buy fodder, control pests on animals
Reduction of resources	Deforestation, Fruit trees die, livestock, wild animals die		Planting of trees after they have been cut down; make use of paraffin stoves and electricity, government involvement in solving the problem,
GROUP 2			
Extreme heat	Early fruiting, trees wilt	Poor crop health	Shade netting
Shortage of water	Rivers dry out, municipal supply only once per week. Boreholes dry out	Lack of education towards saving water	NGOs and government to assist Trench beds, mulching, save water in dams, drip irrigation, irrigate in evening, boreholes, greywater
Reduction of resources	Less grazing, seed shortage, trees are removed, indigenous animals are no longer there		Donations for/of seed Rather use paraffin stoves than firewood. Only chop down mature trees to allow others to grow, planting trees, government intervention Taking care of indigenous plants Plant fodder for livestock
Soils	Poor cultivation practices, soil erosion, dry soils, sandy soils		Using crop residues and manure
Social repercussions	Less or no food, health problems, no jobs	Burning of buses, divorce, separation of families, poverty, crime	Getting access to health care, parents must work
Shortage of implements			Setting up cooperatives for government support, use animal drawn traction- oxen and donkeys, improvise, make our own tools, make use of hand hoes

Table 5: An example of potential adaptive measures from the Thamela (KZN)) climate change dialogue process Thamela CC workshop: Dec 2017

Impact	Adaptation				
Reddish soils	Weeding, they leave it in the plots, because it helps cover the soil but				
	others they take it out of their plots				
Pests	Chemicals				
Increased temperatures our yields	Their crops need soil fertilizer,				
decrease	 Fertilizer increase soil fertility 				
	 Lime lasts for 3 years 				
	o Manure				

Livelihoods are affected there is more hunger	
When temperatures are high they become dizzy and diarrhoea, human diseases increase	They take remedies, such as castor oil and garlic
High temperatures affect their livestock and crop fields	They inject the livestock when they are ill They give them supplements and vaccination and dip them
They don't receive much produce from the fields to sell	
Water	They fetch from the local springs but they mentioned its far and are able to fetch 20l per trip (some springs dry out some don't) RWH for household chores
Potato seed	They buy on pay days
Increase in prizes for farming equipment	Savings grouping and bulk buying

When these two tables are compared to a community who have been involved in a support programme, such a Sekoroo where Lima RDF have been running a Food security and livelihoods improvement programme, the differences in suggestions clearly indicate some ideas gleaned from the facilitating organisation

Sekororo; CC workshop November 2017							
Impacts	Description and linkages	Outcomes	Potential adaptive measure				
GROUP 1							
Heat	Plants wilt and die	Lack of grazing, livestock ide	Mulching, controlled grazing, reduce stock, save/store fodder – leaves and grasses for dry season				
Water shortages	Rivers drying out, boreholes drying out		Greywater, purification using moringa seeds, water storage for dry season				
Soil	Soil erosion (more dongas), soil fertility decreasing,	Deterioration of roads- making access difficult	Planting in tyres, keyhole beds, tower gardens,				
Crop production, resources	Lower yields, more pests, veld fires, reduction of indigenous trees Common pests: cutworms, millipedes, centipedes		Natural pest and disease control, mulching (but this can increase some pests), inter cropping, crop rotation, use of multi- purpose plants (e.g. marigolds) Use the wild cucumber (yellow inside) dry, grind and spray on crops to control nematodes and soil pests Manage cutting of trees and plant more Plant in tunnels				

 Table 6: An example of potential adaptive measures from the Sekororo (Limpopo) climate change dialogue process

 Sekororo; CC workshop November 2017

Livestock	Lack of grazing, more diseases, more damage of crops	Livestock decreasing, not healthy	Control grazing,
Social repercussions	Poverty, diseases, hunger	Crime, murder and theft, domestic violence, divorce, increased death rate, no money to pay lobola	
GROUP 2			
Extreme heat	Veld fires		Use of tunnels, plant heat resistant cultivars, irrigate in early mornings and evenings
Lack of water	No grazing, drying of natural vegetation and bushes, wilting of plants, trees do not fruit, extreme rains destroy infrastructure,	Food shortages, animals die due to lack of grazing,	Water harvesting, earth dams, grey water and management of existing water, diversion furrows
Soils	Organic matter content is low, dry soils, roots are exposed, soil erosion, also due to use of mechanisation - ploughing		Liquid manure, make use of animal manure, trench beds and eco-circles Plant sweet potatoes to hold soil, plant across the slope, plant indigenous crops such as cowpeas, Make use of hands and oxen to plant using conservation agriculture Loosen the soil to avoid water logging and yellowing of plants
Crops	Reduced production increased pests, medicinal herbs destroyed in drought and heat		Plant colourful flowers and plants to attract pest predators and bees, companion planting, making brews form marigolds Plant medicinal species in controlled environments with the vegetables 9tunnels)
Social repercussions	More diseases and health problems, poverty food shortages, low education standards (because schools are free)	No transfer of knowledge, crime	Plant herbs and vegetables, entrepreneurship, job creation, plant your own crops instead of always buying

Based on the adaptive measures suggested a selection of the CSA practices summarised as 1 pagers were introduced to each group. This process was easy for groups that have had some exposure to agroecological practices and support in implementation and a lot harder where little outside support has been available.

6 CONTINUATION OF CC DIALOGUES (WORKSHOP 2): POTENTIAL ADAPTIVE MEASURES, PRIORITISATION OF PRACTICES AND EXPERIMENTATION PLANNING

An outline has been designed for this process and is presented in the table below.

le 7: 2 nd CC workshop agenda outline
--

DAY 1					
Time	Activity	Process	Notes	Materials	Who
9:00am	INTRODUCTION				
9:00- 10:00am	Community and team introductions	In pairs, take 5 minutes to talk to each other. Each person names one practice they know or are doing that is good for CCA - a CSA practice. OR one they would most like to try out.	Practices to be summarised on a flip chart.	Attendance register - with column for CSA practices - in English and Zulu/Pedi. Name tags; stickers, kokis	Preparation: Facilitation: Recording:
	Purpose of the day	Introduction of the organisation/s and purpose of this workshop-Review of understanding of CC, Impacts and adaptive measures. Introduction to CSA principles	Summarise from report of 1st workshop - Use the 5 categories - summarise measures under each. Use two PP slides attached	Flip stand, newsprint, kokis, camera- and one person to undertake to take photos throughout the day. Extra batteries for camera and sim card	Preparation: Facilitation: Recording:
10:00am	Prioritization of practices				
10:00 to 11:00am	Review practices mentioned in detail - both community level and presented from 1pgers	Divide into small groups - for prioritization matrix; Use five categories (Nat res, soil, water, crop, livestock). Supply with cards where all prioritized practises are written. They then prioritize these in a list under each category, based on what to try first, second and so on - make sure the criteria used for these choices are recorded. Come back in plenary, present and get overall choices summarised for all small groups	See Community level prioritization of practices Excel worksheet	Flipchart paper, kokis, cards with all prioritized practices written out, pres-stick	Preparation: Facilitation: Recording:
11:00 - 11:30am	TEA	Fruit (apples, oranges, bis (lots) and plates Genero hot. Find someone to be i while the rest of the work	Preparation		

11:30	Demonstrations and learning				
11:30- 2:30pm	Learning and practical demonstration session on a selection of practices - start with gardening practices (appropriate for present season)	Presentation to group - discussions etc , then practical demonstrations in an appropriate garden - preferable a household garden. Choose 1-4 practices: e.g. trench bed, mulching, liquid manure, intercropping	Facilitators to come prepared with handouts and learning materials. Also materials for doing the practical demonstrations such as mulch, manure, seed, seedlings, tools, and other e.g. shade netting, poles, gravel and ash for tower gardens - depends on practices and must be planned for		Preparation: Facilitation: Recording:
2:30pm	Individual experimentation				
2:30- 3:00pm	Individual choice of practices for household experimentation	After the demonstrations - Make a list for individuals to choose experiments to try out. Headings are practises. Each participant writes their name under the practices they will try - it can be one, a few or all.	facilitators to discuss how an experiment works - ie the farmer compares the new idea to her usual practice. For example if she will do a trench bed, she has to make a bed new to it the same size the way she usually does and plant both in the same way on the same day This way she will be able to see the differences in growth and yield from her practice. She needs to monitor how it is going and be able to report back to this group what has happened.		Preparation: Facilitation: Recording:
3:00pm		ering groups to provide me something similar-)		Rice and stew	Preparation:

Initial Climate Change dialogues, to explore concepts of climate change, the impacts on peoples' lives and farming activities and to start discussions on potential adaptive strategies in these communities have been undertaken for more than¹ 7 villages across three provinces.

Table 8:Climate change dialogues; workshops 1 and 2.

Province	AREA	VILLAGE	No of participants: Workshop 1: CCA	Noofparticipants:Workshop2:Practices
Limpopo	Mametja	Turkey	74	
		Sedawa	24	
	Tzaneen	Sekororo	30	
KZN	Bergville	Thamela	15	2
		Ezibomvini/Eqeleni	21	27
	Estcourt	Tabamhlophe	19	15

¹ The IBLN in the EC covers +/- 10 villages

EC	Alice/Middledrift	Imvotho Bubomi	15	42
		Learning Network		
		(IBLN) - across a		
		number of villages		

6.1 Ezibomvini (KZN) CCAworkshop 2

Below is a summary of some of the discussions undertaken for the 2nd CC dialogue workshop undertaken in Ezibomvini (23 March 2018)

The second workshop, aiming at prioritizing practice options enlisted in the first work shop and thereafter starting a farmer's level experimentation process.

Right: 29 Participants in the 2nd CC dialogue workshop in Ezibomvini (KZN), 23 March 2018

CCA practices that are familiar to farmers

An introduction session over five minutes took place where farmers were to introduce each other and their farming activities. Following is the summary of the results from the discussions:

- The use drip irrigation to retain moisture for a long time in the soil.
- Grey water harvesting practice.
- Use of cow manure
- Mulching
- Intercropping
- Bed design
- Rain Water harvesting
- Watering the garden before sunrise and after sunset
- Blue death as pest and disease control measure
- Conservation Agriculture (CA).
 - CA farmers receive more yields, the level of pests such as stalk borer and cutworm has decreased. Farmers are saving on inputs.

Review of participants understanding of Climate change

Farmers still remember that previously there was discussion that historically there is a change in climate as compared to the current situation. The level of rainfall is now lower and temperatures are high. The increase in temperature has a negative impact on crop growth. There is the high level of wind which dries the soils. Historically it was only windy in winter and presently it is windy throughout. There are no wetlands anymore because there is no rain and people are building houses where there were wetlands.

The impact of Climate Change on farmer's livelihoods

• The outbreak of pests and diseases

There is an outbreak of pests such as aphids, termites, and cutworms, which farmers do not know how they can solve this problem. Some farmers have ants in their gardens and they used blue death.

• Shortage of animal feed

The high temperatures lead to dry conditions, therefore there is a minimum vegetation growing and available for livestock to graze on the grazing lands.

• Burning of Grazing veld

Different farmers have the different reason to burn the veld, some burn it to dispose of the straws left after grazing so that the field can be ready for the following spring, and some burn it for soil fertility and health purposes. At the end of the day burning of fields leads to disease outbreak to livestock. Previously our great grand fathers were creating fire banks so that fires do not spread all over, in nowadays males are lazy and they do not do that.

• Shortage of grazing lands

The population is increasing at an alarming rate, more people are building houses and this has led to the building of houses in the grazing lands.

CSA practices that were suggested by farmers on the previous workshop

The following table outlines the practices and their categories

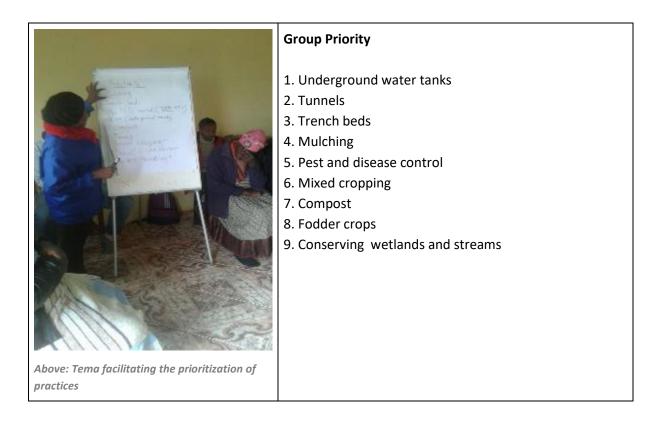

		Natural RM	Soil	Water	crops	Livestock
1.	Tunnels			*	*	
2.	Bed design		*		*	
3.	Mulching		*	*		
4.	Natural pest and diseases				*	
5.	Rainwater harvesting			*		
6.	Trench bed		*			
7.	Composting		*			
8.	Fodder crops					*
9.	Underground water tank			*		
10.	Mixed cropping				*	

Table 9: Suggested practices for farmers, categorised into the 5 primary themes.

11. Conservation of wetlands and streams	*		
12. Burying of disposable pampers	*		
13. Reducing burning of grazing veld	*		
14. Greywater Harvesting		*	

Group Prioritisation of practices

After a presentation of practices, farmers prioritized practices as a team. Due to drought conditions problems the group chose underground water tanks as the first priority. Due to harsh weather conditions farmers chose tunnels as their second option. The following table shows farmers how farmer prioritised practices.

Individual choice of practical household experimentation

Farmers were given a variety of seeds. All farmers were given sachets with the amount 5ml (teaspoon) seeds. The seeds were given to farmers so that they can experiment some of the practices shared among them in their household.

Out of 29 farmers who were present, 20 farmers considered trench beds as their priority. Farmers who chose trench bed will therefore also try out mixed cropping and mulching. Most of the farmers

from the nine left already has trench beds in their homesteads. The following is the list of participants who considered a trench bed as their first priority.

Name	Village Name
1. Jabulile Nkabinde	Ezibomvini
2. Fikile Hlongwane	Ezibomvini
3. Nonhlahla Zikode	Ezibomvini
4. Landiwe Gamede	Ezibomvini
5. Gcinekile Zikode	Ezibomvini
6. Hlengiwe Ndaba	Ezibomvini
7. Busisiwe Zikode	Ezibomvini
8. Alfred Gumede	Ezibomvin
9. Velephi Zimba	Ezibomvini
10. Sizeni Dlamini	Eqeleni
11. Lndokuhle Hlongwane	Ezibomvini
12. Conastance Hlongwane	Thamela
13. Thulile Zikode	Eqeleni
14. Sibongile Zikode	Eqeleni
15. Dambi Ntuli	Thamela
16. Zanele Hlongwane	Thamela
17. Thokozile Mpambo	Eqeleni
18. Nomalanga Khumalo	Eqeleni
19. Mvelo Zikode	Ezibomvini
20. Sdudla Sibiya	Ezibomvini

Table 10: Individual volunteers for trench bed experimentation in KZN (Bergville)

Conclusion and Recommendations

- As mentioned earlier, the weather was not favourable for the workshop field demonstration, therefore the activity was not done. Demonstrations will be done in the small group within the individual community. This means that the demonstration will not be done in a collective group of Ezibomvini, EQeleni, and Thamela, but there is going to be an individual demonstration for each community.
- On the individual prioritization, most farmers demonstrated an interest in trying trench beds. It is assumed that most farmers are hoping that if they prepare trench beds they will be in high chances to get a tunnel, more clarity should be made to farmers regarding tunnels availability after having trench beds.
- Farmers have expectations to be given free tanks, and it was further clarified to them that the program is based on transferring knowledge.
- Farmers are not certain about individual priorities, therefore, there is a need for an assessment of individual's needs.
- More demonstrations and workshops are still needed to strengthen farmers understanding on Climate change and Climate Smart Agriculture Practices.

6.2 Alice (Eastern Cape) CCA Workshop

This workshop was intended to explore further the particular CSA practices in which farmers were interested, and with which they wished to experiment with the support of the WRC-CSA project team. While this aim was achieved to a considerable degree, the large numbers of participants (42 people registered), many of whom had not been involved with Phase I required that some time was spent introducing the whole concept of CSA. Of the 42 registered participants, in addition to 17 farmers, there were numbers of students some of whom did not remain throughout the day. However, the attendance by the Head of Department for Crop Production at Fort Cox, and the Agribusiness Diploma Course leader together with several of their students, suggests a very strong interest in the concept of CSA in the college. There were also 5 members of the Eastern Cape Department of Rural Development and Agricultural Reform (DRDAR) extension services in attendance.

Given the difference in context between the Eastern Cape situation, where the project is working with a broad network (the IBLN) of agricultural practitioners, including some commercial-scale emerging farmers, as opposed to in other provinces where the WRC-CSA project works almost exclusively with small-scale and household farmers, the programme followed was an adaptation of that followed elsewhere and outlined in Table 7, above. However, the same key features were covered, and it included a highly participatory practical activity.

The purpose and scope of the WRC-CSA project was explained, including the farmer experimentation approach which would require close monitoring of both areas subject to CSA practices and control plots without these practices.

The first session laid the ground for a group activity in which the participants divided into 4 groups, each with a computer and the pdf version of the WRC- CSA Practices document. Their brief was to go through the document and identify which practices they would consider most appropriate in their contexts and why. Each group provided feedback on the outcomes of their discussions with the

practices they had identified captured on Newsprint. There was discussion concerning the scales at which specific practices might be appropriate and it transpired that although most practices were initially considered as only relevant at smaller scales, they could be scaled up in different ways to become relevant on a larger scale.

Right: EC Group discussion on CSA Practices

Table 1, below, represents the outcomes of this activity, combined with the numbers of individual participants who later identified specific practices in which they were interested in the register.

Table 11:CSA Practices: Prioritization by groups and individuals

NOTE: Groups in this case are the small groups in the workshop setting consisting of homestead gardeners, cooperative members and more commercial farmers

Practice	Scale(s) (Small – homestead,	No of Groups	No of	
	M edium <1ha, L arge >1ha)		Individuals	
Swales	les All		3	
Greywater	Small	1		
Small Dams	S/M	1		
Fertility Pits	S/M	1		
Contours	M/L	1		
Terraces	ALL	1		
Furrows/Ridges	All	0	1	
Infiltration pits/	Small	1	2	
Banana Circles				
Raised Beds	All (considerable discussion here, with	1		
	some saying just S/M)			
Trench Beds	S/M	1		
Tower Gardens	S	1	3	
Tunnel	All	1	2	
Basins/In-field	All	1	1	
Mulching	All	4	4	
Close-spacing	Considered to be very closely related	3	3	
Intercropping	All – in different ways			
Mixed Cropping				
Crop Rotation	All	1		
Minimum Tillage	All	1		
Herbs	All	2		
Liquid Manure	All	2		
Bucket Drip	All (Drip, although buckets for just	3	5	
	Small scale)			
Underground Storage	S/M	1		
Rainwater Harvesting (general)	-		1	

What was perhaps most interesting about these outcomes was the great difference between the practices selected by the different groups, with only mulching being identified by all 4 groups, and just the Bucket Drip and the combination close/mixed/inter-cropping practices by 3 out of 4. Essentially almost all the practices listed in the document were selected by one or another group. The individual preferences as recorded in the register were similarly diverse with a similar concentration on (bucket) drip, mulching and close/mixed/inter-cropping. Swales, tower gardens and tunnels were also identified as being of specific interest to several participants. Only one participant identified large-scale furrows and ridges and infield RWH as being of interest to them, although the hosts at Mavuso village during the Phase 1 workshop are also interested in these practices.

The outcomes of this exercise suggest that there is certainly scope for the WRC-CSA project team to establish support programmes for a number of the farmers in the Eastern Cape.

The Practical Activity

As no specific practices had been previously identified as being of particular interest to the farmers, and the nature and condition of the land being made available by the College for the activity was not known, the preparations for the activity consisted of the purchase of a range of vegetable and herb seedlings. It was also ascertained that tools and mulching materials would be made available by the college.

The site allocated by the College farm manager was part of an experimental site used also by the WRC Amanzi for Food project. There was a choice between a small portion of a recently ploughed land, which had become heavily weed infested, and an area which had been long untilled and had reverted to grassland. The lecturer responsible for the demonstration site suggested that the untilled area might be more suitable, and this was agreed.

The practices agreed on for the site were: minimum tillage; close cropping; intercropping; herbs; and mulching, the idea being to try and develop a mixed area of cabbage, lettuce, carrot, and onion, with inter-planting of parsley, mint and coriander. The choice of vegetables and herbs had been constrained by what had been available at the nursery, and while this was not ideal, the principles underlying these practices could at least be demonstrated to some extent. It was, however, recognised that a considerable risk was being taken in planting into a grassland, especially as winter approached.

One major advantage of this site, though, was that 2 postgraduate interns, who would stay at the college for a full year, were given the responsibility to water and maintain the site.

Above left and right: Preparing the ground for minimum tillage and watering the mixed planting of vegetables and herbs

Conclusion

The meeting concluded after lunch with individual farmers identifying specific practices with which they would like to experiment (as recorded in Table X, above). This information would be shared with the WRC-CSA project team members in KZN who would be visiting the Eastern Cape in August September to initiate the experimental phase of the project in the province.

7 BASELINE INFORMATION

Initial Climate Change dialogues, to explore concepts of climate change, the impacts on peoples' lives and farming activities and to start discussions on potential adaptive strategies in these communities have been undertaken for more than² 7 villages across three provinces. In addition, baseline information was gathered from aa number of these groups. This consisted of individual interviews and village walkabouts and speaks to providing information for the farmer typology and aspiration parts of the decision support process as outlined below.

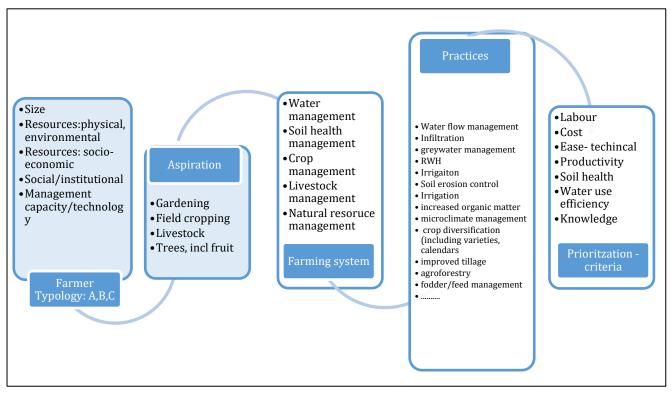


Figure 1: The Smallholder decision support system process

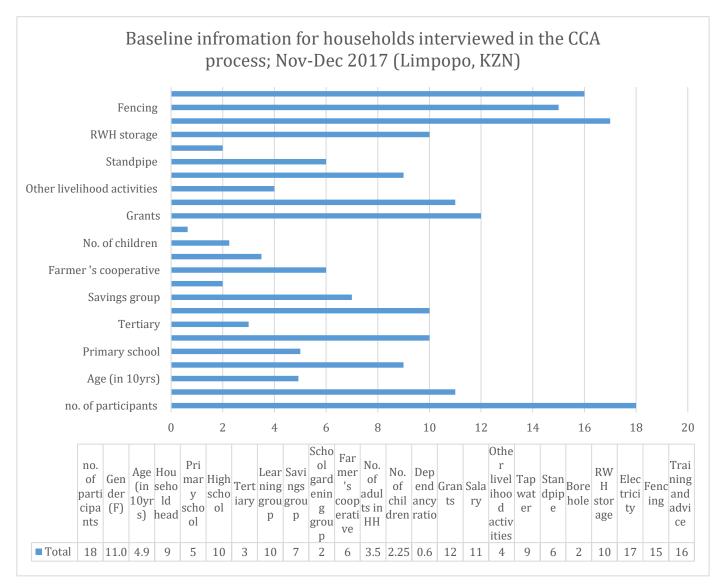
7.1 Household level questionnaires

As a part of the initial community level interactions household interviews are conducted while doing a village based "walkabout" for the following purposes:

- 1. To glean information for the DSS around farmer typologies and farmer aspirations; through a household questionnaire
- 2. To assess climate related stressors in the environment; thus to do a basic qualitative assessment of availability of resources, stress on those resources, farming activities and vulnerability of households; *through more general discussions and photographs*.

² The IBLN in the EC covers +/- 10 villages

Household level questionnaires (see APPENDIX 1 for an outline of the questionnaire) were administered to 6 participants in each province (KZN, Limpopo and EC) as a pilot of the process. The 6 participants in each case were randomly chosen or volunteered and were participants of the climate change dialogue and impact workshops conducted in these areas.


These participants are not seen as representative of the broader community, but are seen as representative of the interest group in the community willing to tackle the issues around their farming practice and work towards improvements.

The questionnaires touched on a range of topics to assist with a farmer typology classification and also to assess available resources, farming activities and vulnerabilities of the participants including:

- Basic socio-economic and household information
- Access to services and infrastructure
- Social organisation
- Learning and access to information
- Livelihoods and faming activities
- Income and
- Market access

The socio- economic data for the interviewees has been summarised in the figure below. From the figure we can make the following observations:

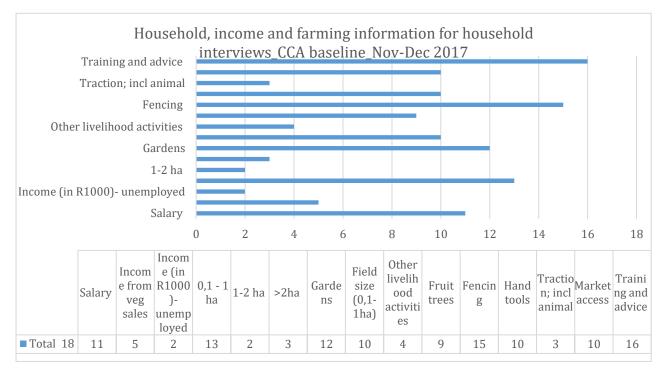

- 61% of respondents were female (n=18) and the average age of respondents is 49 years.
- The average household size is around 5 members and the dependency ratio for this groups is 66. This is significantly higher than the national average of 44,5. Dependents in this case include both children under 15 years of age and pensioners.
- The level of education of these participants is Primary school level 28%; High school level 56% and tertiary level 16%. This generally higher level of education is reflected also in the inclusion of younger adults in this group of participants
- 80% of participants belong to social organisations; including learning groups Village Savings and Loan Associations, school gardening groups and cooperatives
- Regarding incomes, 67% of the households from this group receive social grants and 61% receive salaries. The average monthly household income is however still low at R3 992. For households without employment this is MUCH lower at R947/month.
- Access to electricity is common (89%), but access to water is much more restricted with access to municipal water through household taps and communal standpipes being 50% and 33% respectively. This does not mean water is freely available, especially in KZN and Limpopo where municipal systems fail often and for extended periods of time.
- 56% of these participants have some form of rainwater storage; drums or Jo-Jo tanks (2000l) are the most common and 11% have their own boreholes (participants from Limpopo only)

Figure 2:Baseline information for CCA workshop participants

An important component of the information, for the purposes of the farmer typologies and the DSS is the scale of operation. This is different depending on the local situation in the villages – for those that have undergone betterment planning with tightly laid out villages and fields a distance from the homestead (Limpopo, EC) - most households only have access to small household gardens; for those within communal tenure areas that have developed independently provide household gardens and homestead fields between 0,1-1ha). Larger fields are generally only accessible though more formal arrangements such as cooperatives.

For this sub-group of participants 72% have access to 0,1-1ha of land, 11% have access to 1-2ha of land and 17% have access to >2ha. Those that have gardens make up 67% of the participants. 61% of participants keep livestock, but only 16% own cattle.

Farming related information is summarised in the figure below.

Figure 3: Household, scale of farming and income information for CCA participants

Most of the participants farm by hand, or rent tractors or oxen. Those with direct access (ownership) are only 17% - and these participants invariably come from households where members are employed.

Overall vulnerability in farming is HIGH as people have access to small pieces of land, generally rely on dryland cropping, farm by hand and own small numbers of livestock. Cattle ownership is becoming less common with only around 16% of households owning cows. Participants farm mostly for food production to feed their families, and only around 28% sell produce.

7.2 Farmer typologies

Rural dwellers in South Africa, most of whom live under communal tenure arrangements comprise around 19 million people – around 34% of the South African population. The vast majority of these people are not actively farming -around 85%. There are presently only around 35 000 commercial farmers still active.

There are a number of different models for approaching farmer segmentation and a few examples are already available. Smallholder farmers fall within different categories of resource availability, capabilities and aims for their farming. The segmentation approach sets out the basis for providing targeted support to the different segments of the farming community; according to their own aspirations and abilities. Such models can be useful in the DSS being developed.

One such model has been developed for the GrainSA Smallholder Farmer Innovation Programme in Conservation Agriculture. The outline of this typology is presented in the table below. By far the largest category of rural dwellers are the non- commercial and semi-commercial smallholders who make up around 2,5 million people. Commercial smallholders in loose value chains make up around 250 000 people and those in tight value chains only around 10 000.³

Category	Non-commercial	Semi-commercial	Commercial	Commercial
	smallholders	smallholders	smallholders in	smallholders in
			loose value chains	tight value chains
% of people in	72	23	5	-
each category				
Farmer priorities	Most production	Production is	Consumption and	Primarily for sale-
	consumed by the	intensified. Selling	sale in various	working within
	household and	becomes more	percentage mixes	existing well
	additional food is	significant and	but moving to more	defined commodity
	bought in	supplements	sales.	value chains
		household income.		
Gender	Mostly women	Mostly women	Women, men (40%	Mostly men
_	(89%)	(96%)	<pre></pre>	
Resources	Low external input	Mixed (low and	Mixed (low and	Mostly high
	systems are used	external) input	external) input	external input
	with a minimum	systems are used with a minimum of	systems are used	systems
	of bought inputs		with greater	
		bought inputs	reliance bought inputs	
Traction	Hand cultivation	Hand cultivation,	Animal traction,	Tractors
maction		animal traction	tractors	TIACTORS
Land size	≤ 0.1ha	0.1-1ha.	1-2.5ha	>2ha
Farm	Extremely low	Low to high	Low to high	Low to high
productivity,	Extremely low	2011 10 1181	2011 10 11.811	2011 10 11811
including labour				
access				
Access to	Very limited	Limited	Limited	Good
improved				
agricultural tech				
and information				
Access to	Very limited if at	Very limited if at all	Very limited	Informal and some
financial	all			formal through
services				buyers
Local	Almost non	Almost non existent	Informal farmers	Farmers
organisation	existent		groups	associations and cooperatives
Agribusiness	Very limited.	Very limited.	Informal but	Reasonable
support			growing	

 Table 12: Farmer segmentation in the Bergville smallholder farming system

³ Cousins, B. (2015). Through a glass darkly: towards agrarian reform in South Africa, in: Ben Cousins and Cherryl Walker (eds), 2015. *Land Divided, Land Restored. Land Reform in South Africa for the 21st Century*. Auckland Park: Jacana (250-269).

Engagements	Very little;	Limited and still	Both informal and	Can be good due
with markets	entirely informal	informal for the	formal	to value chain
	,	most part		farming bundles
Environmental performance	Generally not considered	Generally not considered, some adoption of conservation and sustainable practices	Generally not considered, some adoption of conservation and sustainable practices	Some adoption of conservation and sustainable practices
Crop mix	Staple crops Crop livestock mixes focussing on 4-5 commodities	Staple crops, some cash crops, crop livestock mixes – focussing on 3-4 commodities	Staple crops, some cash crops, crop livestock mixes – focussing on 2-3 commodities	Mostly cash crops – focusing on 1, maybe 2 commodities
Livelihood (Food Security, Total monthly income, assets, poverty likelihood, perceived well being)	Food Security: low Monthly Income: R0-R2000 Assets: minimal Poverty Likelihood; High	Food Security: low- medium Monthly Income:R2001- R4000 Assets: minimal- starting to build Poverty Likelihood: medium	Food Security: medium-high Monthly Income:>R4000 Assets: reasonable Poverty Likelihood: Iow	Food Security: high Income: Assets Poverty Likelihood

This model provides a good starting point for the development of a farmer typology for interventions in climate change adaptation and similar categories have been used in our process.

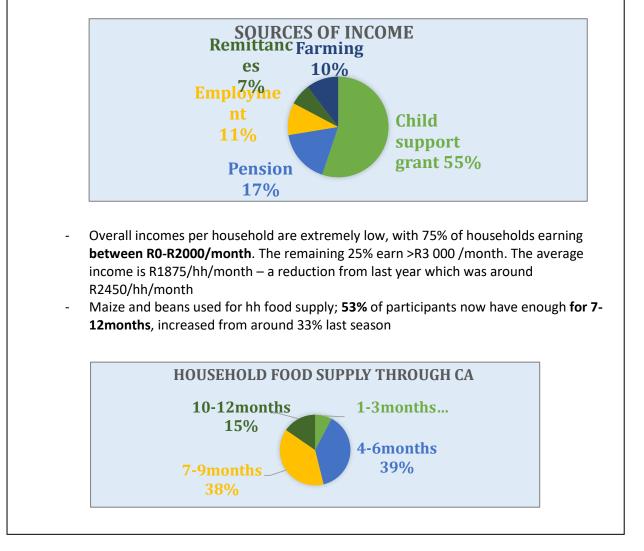
The CC baseline survey provides for a number of vulnerability indicators. As a starting point an analysis of incomes of the interviewed households is summarised in the table below

		MONTHLY INCOMES (in Rands)					
Village	Name & Surname	Grants	Salary	Income from veg sales	Total income	Ave per village	
Sekororo/	Chenne Mailula			R2 000,00	R2 000,00		
Lorraine	Lydia Sechube	R1 600,00			R1 600,00		
	Dimakatso Thobejane	R380,00			R380,00		
	Masine Morerwa		R15 000,00		R15 000,00		
	Mdimi Shai	R1 760,00	R4 740,00		R6 500,00		
	Flora Maimela	R1 600,00			R1 600,00	R4 513,33	
Tabamhlophe	Winnie Dlamini	R380,00	R4 620,00		R5 000,00		
	Zanele Ngobese		R8 000,00		R8 000,00	R6 500,00	
Eqeleni	Ntombakhe Zikode	R1 140,00			R1 140,00	R1 140,00	
Ezibomvini	Nombono Dladla	R600,00			R600,00		
	Zodwa Zikode	R600,00			R600,00		

Table 13: Baseline information related to incomes

	Phumelele	R1 530,00		R730,00	R2 260,00	R1 153,33
	Hlongwane					
Alice/Middledrift	Pheza Makisi		R9 000,00	R1 000,00	R10 000,00	
area	Bongiwe Mxonywa	R380,00			R380,00	
(+/- 10 villages)	Xolisa Dwane			R7 000,00	R7 000,00	
	Mncadi Mabandla	R1 140,00	R4 000,00	R860,00	R6 000,00	
	Mandisa Mama	R760,00	R1 040,00		R1 800,00	
	Siyabulela	R760,00	R1 240,00		R2 000,00	R4 530,00
	Gungqceni					
AVERAGE MONTHLY INCOME		R971,54	R5 955,00	R2 318,00	R3992,00	
(excluding zero inc	omes)					

From the table above the following points come to the fore:


- 1. 72% of Households interviewed receive social grants and this is the only household income for 33% of these respondents. The average 'income' from grants is R972/ month
- 2. 44% of Households interviewed receive a salary as part of their monthly income. The average household income from salaries is R5 955/month. The number of households where there is employment in this interview groups is proportionally much higher than the average in rural communities around South Africa, where reliance on grants can be as high as 70-80%.
- 3. Even so only 28% of these respondents earn an income from farming, with 11% (or two individuals of 18) earning their entire income from farming. Average income from farming (both sale of vegetables and field crops) is R2 320/month.
- 4. Corroboration of information from project related baseline surveys (see the textbox below) indicate average income in Tabamhlophe to be around R1 567/month per household. This is similar to the data obtained for the Bergville area which is close by. For Bergville there is a whopping 89% unemployment among the project participants and 72% rely entirely on grants for their income and 75% of households earn between R0-R2 000/month.
- 5. In the villages in Limpopo and EC where there is a somewhat higher proportion of employment, the average monthly incomes are around R4 500/month per household

LIVELIHOODS SURVEYS IN KZN (2017)

In Tabamhlophe, the Lima RDF fieldworker, Lindelwa Ndaba conducted a baseline survey with her 13 participants in the Food Security learning group she is training and mentoring. From this survey the average monthly income for these participants is R1 567.

In Bergville (which includes Eqeleni and Ezimbomvini) the MDF fieldworkers led by Phumzile Ngcobo conducted a seasonal review of the Conservation Agriculture support programme in August 2017. This survey includes information about income sources and incomes for these participants. For a sample of 21 participants the following information was summarised:

Income sources are social grants (72%), employment (11%), remittances (7%) and farming (10%)

The information around incomes indicate a HIGH LEVEL of vulnerability for rural dwellers engaged in farming activities. Only about 1/3 of participants make any income from their farming activities and these incomes are generally subsidised from social grants or other employment.

The WRC baseline survey further explored incomes for male and female headed households. A third category consisting of both male and female headed households of working age (thus having no old age grants) emerged. The small table below summarises the incomes

Average monthly income per household		
Male headed (39%)	R7 071	
Female and male headed (33%)	R 2 068	
Female headed (28%)	R 940	

Thus, female headed households in these rural areas labour under a VERY HIGH LEVEL of vulnerability due to their very low levels of income (ave R940/hh/month). Households that cannot access old age grants make up another category of vulnerability (ave R2 068/hh/month). With an average household size of 5 members, it is clear that the ability of these households to commit resources towards climate change adaptation would be severely limited.

The inclusion of other livelihood and vulnerability indicators then assisted us to build a tentative and initial farmer typology for the smallholder farmers involved. This typology is outlined in the table below.

Both typologies A and B can be considered to have a HIGH LEVEL of vulnerability. Typology C indicates a much smaller group of smallholder farmers who have better or more reliable access to infrastructure and support, are generally better educated, have access to larger fields and more livestock and farm primarily for income generation purposes. They fund these farming enterprises primarily through incomes earned from employed members within the household, or a combination of employment and social grants (including pensions). These farmers are also more likely to belong to cooperatives and farmers associations and to have access to formal market linkages.

Table 14: Parmer typology for the WKC-CCA process						
FARMER TYPOLO	DGY	A (44%)	B (18%)	C (39%)		
Basic socio-	Gender	100% Female	80% Female	5-15% female		
economic and		farmers	farmers	farmers		
household	Age range	33-66yrs	27-48yrs	31-78yrs		
information	Household head	Female	Female/male	Male		
	Dependency ratio	0,7	1	0,5		
Livelihood	Employment	Unemployed	Unemployed/	Employed		
activities			employed			
	Small businesses	80%(Selling in	0%	0%		
		schools, sewing				
		etc)				
	Grants	1-3	1-3	1-3		
	Farming activities	Gardens, fields,	Gardens, fields,	Fields, livestock		
		livestock	livestock			
	0,1- 1ha	100%	100%			
	1-2ha			50%		
	>2ha			50%		

Table 14: Farmer typology for the WRC-CCA process

Levels of income	R0-R1999	R940		
(per hh/month)	R2000- R4999		R2 100	
	>R5000			R7 000
Access to services	Electricity	80%	80%	100%
and infrastructure	Water -taps (hh)	0%	50%	100%
	Standpipes (100- 400m)	80%		
	RWH	30%	67%	67%
	Farming infrastructure	Hand tools	Hand tools	Tractors, planters
Social organisation	Groups (for learning, school gardening etc)	80%	80%	80%
	Saving clubs	100%	60%	
	Cooperatives			100%
Learning and	Level of education	Grade 4-Grade 12	Grade 7-grade 12	Grade 11- Diploma
access to information				
Market access	Informal	15%	15%	67%
	Formal	0%	0%	83%
Farming income	Food only	100%	40%	
	Food plus income		60%	
	Mainly income			100%

This typology is specific for people actively involved in rural development programmes/projects. A few interesting points come to the fore:

- TYPOLOGY A: Woman headed households are by far the most vulnerable. In this survey all the most vulnerable households are woman headed households; where the household head is unemployed, farming only for food production (0,1-1ha, both gardens and fields), have limited access to water and engages also in other small business activities such as sewing. All the members of this group belong to savings clubs and have a slightly lower average level of education than the other two groups.
- 2. TYPOLOGY B: This category consists mainly of economically active women without access to old age pensions in their households. They rely on grants and some employment within the household for their income and have somewhat easier access to water and farm for both food and income (0,1-1ha, both gardens and fields) although these incomes are quite low.
- 3. TYPOLOGY C: This group consists primarily of gainfully employed households with reasonable incomes and can thus afford membership of cooperatives that provide access to larger fields and irrigation (1-2ha and >2ha fields). They farm mainly for income generation, have better access to markets and a higher average education level than the other two categories.

Categories that do not vary much across the typologies includes:

- Access to tools and farming equipment a very few individuals in Typology C own tractors and implements, but most participants rely on hand tools and some animal traction.
- Access to electricity is the same across all three typologies
- Farmers engage in gardening, field cropping and animal husbandry across all three typologies.

- Participants across all three categories have equal access to social grants
- The dependency ratio (no of children and pensioners compared to the number of working aged adults in a household) is quite a bit higher than the national average for 2016 which was 44,5, at 66. There are however fewer children living in these households than would be expected, but more economically dependent adults. Again, this situation is the most severe for Typology A; the poorest households.

7.2.1 Scale of operation

This appears to be more dependent on the area and presently:

- In Limpopo all participants were working in gardens only
- In KZN most participants worked in both gardens and fields depending on the type of villagein the more urban, planned villages with smaller demarcated plots – only gardens and in areas where communal tenure arrangements have allowed for fields close to home – then gardens and fields
- In EC; A 10ha cooperative plot shared by 6 individuals producing crops under irrigation (vegetables and field crops)

Province	Village Name	Description	Scale of	Livestock	Ave income	Ave
			operation		for village	monthly
						income
						from
						farming
Limpopo	Sekororo	Village + fields	0,1-1ha	None	R4 513 (2/6	R2000 (1/6)
		(further away)	Gardens only		employed)	
KZN	Tabamhlophe	Village (no	0,1-1ha	Chickens	R6 500 (2/2	RO
		fields)	Gardens only		employed)	
	Eqeleni	Informal village	0,1-1ha	Chickens,	R1 140 (1/1	RO
		(fields around	Gardens	goats, cattle	unemployed)	
		homesteads)	Fields (0,1-			
			1ha)			
	Ezibomvini	Informal village	0,1-1ha	Chickens	R1 153 (3/3	R780 (1/3)
		(fields around	Gardens	goats, pigs,	unemployed)	
		homesteads)	Fields (0,1-	cattle		
			1ha)			
EC	Alice	Cooperative	Fields (0,1-	Chickens,	R4 530 (4/6	R2954 (4/6)
		~10ha -	1ha, 1-2ha,	goats, pigs,	employed)	
		irrigated	>2ha)	cattle		

Table 15:Summary of scale of operation for present participants in the WRC-CCA process

This points towards the main category of farmers to be supported through the DSS being those with access to household gardens and small livestock such as chickens, goats and pigs and those with access to small (0,1-1ha) dryland fields.

Other categories that still need some attention in terms of a coherent set of CSA practices are

- 1. Irrigated fields and
- 2. Grazing management for livestock (cattle)

7.3 Walkabouts

Walkabouts in this context are informal village walks consisting of the facilitators of the process and volunteers or key informants from the local community who have been engaging the climate change dialogues and can broadly be considered a Rapid Rural Appraisal process.

The village walks included in the CC baseline survey fulfil a number of purposes:

- To provide facilitators with a perspective on the general state of resource availability, access and use in a locality (soil, water, natural resources, infrastructure)
- To provide a qualitative assessment of the potential impacts of CC in the area
- To assess the local farming practices and
- To record and assess potential good practice (indigenous / traditional practices) for climate smart agriculture
- To review the implementation of CSA practices in the area (if relevant) and
- To interview individual householders for vulnerability and livelihood information

Below are a selection of household visits during walkabouts in Tabamhlope (KZN, Ezibomvini (KZN) and Mavuso (EC). The full reports can be found in Appendices 2,3 and 4.

7.3.1 Tabamhlophe

Below are images illustrating the walkabout in Mrs Ntuli's household. She has recently moved into the area and has joined the farmers' learning group in the community. What has driven Mrs Ntuli in participating in this learning group was that she has a son who is not well and the doctors have recommended that she gives him fresh vegetables to boost his health. She also attends a church in the community that feeds the homeless people;

this has played a huge role in her life as it encourages her to take care of her garden so she can give to the needy people within her community. She also began to keep chickens with an intention of selling to generate income as her husband is the only one working in the household.

Right: Mrs Ntuli next to her shade house which contains 6 trench beds where she produces, spinach, carrots, tomatoes, peppers and beetroot

Above left and right; She uses submerged 2litre bottles for slow subsurface irrigation in her shade house and keeps a small flock of broilers for sale in corrugated iron hut constructed for the purpose.

The second household we visited was Mrs Dlamini's. She has been part of the LIMA learning group since inception and has made trench beds in her home garden and intercropped her vegetables. She grows cabbages, lettuce, carrots and beetroot in her trench beds. Mrs Dlamini uses 2 litre bottles to water her garden by burying them half way into the soil. She has a Jo-Jo tank for RWH.

RIght: Mrs Dlamini's Jo-Jo tank. Ditches are evident to try and deal with run-off and erosion close to the house. Far right: In intercropped trench bed with 2I bottles for slow even irrigation

7.3.2 Ezibomvini

Household 1: Mrs. Phumelele Hlongwane

A 38 year old mother of 6, Mrs Phumelele Hlongwane is passionately involved in her farming activities. In her garden she grows a variety of crops inclusive of; cabbages, spinach, tomatoes, potatoes, and green peppers. She also keeps livestock inclusive of, 6 goats, 2 pigs and a flock of indigenous chickens. Apart from her household garden she also plants in her field of 1 ha where she grows potatoes, sweet potatoes and maize. Mrs Hlongwane joined the CA learning group in 2014 and is currently a community facilitator of the learning group. From her vegetable produce she sells the surplus to her community members. Right; The pig pen Far right: A patch of beans struggling in the hot dry conditions prevalent this season

Below is a case study done for Phumelele Hlongwane that has been published in "SA Grain" the February 2018 edition of the GrainSA newsletter, as well as the Adaptation Network Newsletter (January 2018)

Case Study GrainSA SFIP: Conservation Agriculture builds a better life for Mrs Phumelele Hlongwane (Bergville)

Authors: Phumzile Ngcobo¹, Erna Kruger

¹Mahlathini Development Foundation. 2 Forresters Lane Pietermaritzburg, 3201. www.mahlathini.org. Cell: (+27)828732289

Phumelele Thembisile Hlongwane is a 38 year old woman and a mother of 6 from Bergville Emmaus- Ezibomvini village. She says her passion stems from agriculture's ability to enable her to be self reliant, in her case the key is diversification. She has a vegetable garden in her homestead planted to a wide variety of crops including brassicas, cabbage, spinach, tomatoes, potatoes and green peppers. She owns livestock; 03 cattle, 6 goats, 2 pigs and a flock of indigenous chickens. She also plants her fields to field crops such as potatoes, sweet potatoes, maize, dry beans and soy.

"Maka Ndoza", as she is affectionately known joined the Grain SA CA project in 2014 and is now the community facilitator of her Ezibomvini learning group. She is a member of the village savings and loan association, along with other members of her learning group. Here the save and take small loans for inputs and other livelihood necessities. She is also one of the pioneers of the programme's local farmer centre model which she runs jointly with her sister in law Zodwa Zikode, who is also a member of the learning group.

Phumelele Hlongwane shares that the primary aim of the farmer centre is to be able to provide

production inputs to farmers in quantities and at costs they can afford. The farmer centre providing seed, fertilizer and chemicals has really come into good use as according to her the rates of agriculture activity in her community have improved because quantities sold at the farmer centre start from as little as 1 kg up to entire bags of seed/ fertilizer. "Many people in the village had stopped planting because they could not afford inputs" said Phumelele further supporting the importance of the farmer centre.

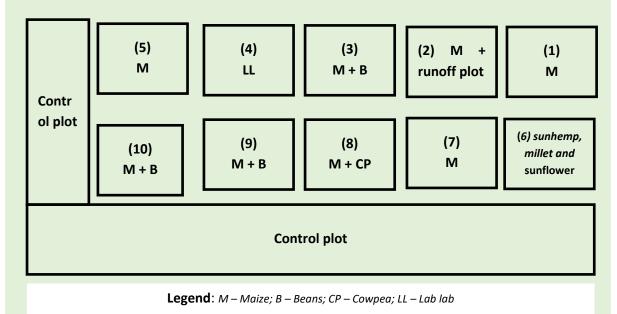
The returns derived from the farmer Centre are not large and are also quite seasonal. To date they have made a profit of around R300-R600/ month from sales, most of which has been re-invested to continue to buy stock.

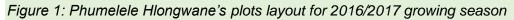
Right: Offerings form the local farmer centre also includes some local produce, to augment the sale of inputs in the slow periods

The small table below indicates sales and shows also the seasonality of these

Date	Fertilizer	Herbicide	Top dresser	Seed	Total
December	R2758	R1400	R480(LAN)	R1161(maize)	R6509
2016			R630(UREA)	R80(beans)	
January	R0	R280	R1692(UREA)	R360(beans)	R2404
2017				R72(maize)	
February	R24	R0	R336(UREA)	R80(beans)	R440
2017					
March 2017	R0	R0	R36(UREA)	R0	R36
April 2017	R0	R0	R0	R0	R0

Table 1: Ezibomvini farmer centre records from December 2016 to April 2017


While her vegetable garden yields some income for her, this is periodic because she only sells surplus, leaving her predominant source of income to social grants for five of her six children. Field crops also are primarily for household consumption.


Right: Phumelele's vegetable garden (November 2016)

Conservation Agriculture Experimentation

Phumelele's trials were continued in this season. The layout of her plots are shown below for the 2016/2017 season. She is practicing crop rotation as well as intercropping and planting of cover crop mixes; both summer (sunflower, millet, sunn hemp) and winter (saia oats, fodder rye and fodder radish).

Yield results

In the 2015-2016 season, Phumelele out performed almost all the other smallholders and managed to get rather impressive yields at a time when most other farmers' crops failed. She experimented with a number of different crop combinations in her CA plots. Her maize control was also a CA plot, but with use of her own fertilizer and seed options. Her experimental plots included:

- Intercropping of maize with beans
- Intercropping of maize with cowpea
- Planting cover crops in between rows of maize (relay cropping)
- Intercropping maize with lablab
- Planting a single crop of maize (control)
- Planting a single crop of Lab-lab (Dolichos) beans and
- Intercropping of maize with Lab-lab beans

Phumelele followed with a rotation schedule of the same experiments in the 2016-2107 season.

Left to right: Phumelele standing in front of her maize and bean intercrop plot, taken on 17 Jan 2017. Her Lab-Lab plot and a SCC plot where she grew sunflower separately and millet and sunn hemp together.

The table below shows yield comparisons for Phumelele's experimental plots.

Table 2: Maize yields from different experimental plots in Phumlele Hlongwane's
(Ezibomvini) field

	2015/2016 season				2016/201	7 Season
Plot no	Crops Planted	Maize Yields (t/ha)	Crops planted		Maize Yields (t/ha)	Change in yield (t/ha)
10			Maize	+		
	Maize +Beans	8,3	Beans		8,8	0,5
9			Maize	+		
	Maize +Cowpea	8,7	Beans		8,9	0,2
8			Maize	+		
	Maize + Beans	10,4	Cowpea		7,7	-2,7
7	Maize +Cowpea	6,9	Maize		6,5	-0,5
3			Maize	+		
	M +SCC+WCC	8,7	Beans		10,1	1,4
1	Maize +Beans	6,9	Maize		6,2	-0,7

The small table below indicates yield averages over the last two seasons.

Table 3: Summary of different crop yields in Phumelele Hlongwane's experimental	1
plots.	

t/ha	2016	2017
Maize (Control)-CA	7,8	9,7
Maize Trial CA - combined	6,93	8,3
Beans	0,25	1,81
Sunflower	0,3	0,8

NOTE: Yield increases in 2017 were achieved despite reduction in fertilizer application. She did not apply basal MAP, only top dressed with LAN

Control plo	t -Convention	al tillage		Trial plot -Conservation Agriculture			
Rainfall			% rainfall converted			% rainfall converted	
event (mm)	Runoff (mm)	ratio	into runoff	Runoff (mm)	ratio	into runoff	
14	4	3,5:1	28.6	2.5	5,6:1	17.9	
22	2.5	8,8:1	11.4	1.5	14,7:1	6.8	
9	1.25	7,2:1	13.9	1	9:1	11.1	
20	3.25	6,2:1	16.3	2	10:1	10.0	
13	5	2,6:1	38.5	2.25	5,8:1	17.3	
21	2.5	8,4:1	11.9	1.5	14:1	7.1	
AVERAGE	3,1		20,1%	1,1		11,7%	

Table 4: Rainfall and runoff relationship from Phumelele Hlongwane's plot

Phumelele's production is very impressive, with yields on a par with or somewhat better than commercial yields in the area

Run-off results

Two run-off plots were set up for Phumelele; one in her trial plot and one in the conventional maize control plot. Measurements were taken by her. Runoff data was collected for those

rainfall events where run-off could be correlated to rainfall dates. Not all data was useable as there were times when she forgot to take readings after one rainfall event and thus run off was conflated over a number of rainfall events. Or the bucket was left for quite a while and then emptied at a point that did not correlate with a rainfall event. These readings were not included.

Right: A view of the run-off plot set up in Phumelele's CA trial plot planted to maize early in the production season (December 2016)

In general, there was more runoff in the conventional tillage plot compared to the CA trial plot. The runoff average for the control plot was 3,1mm per rainfall event and that for the CA plot averaged 1,1mm. results are shown in table 6 below.

The percentage of rainfall converted into runoff, ranges between 11.36% and 38.46% under conventional tillage, while it ranges between 6.82% and 17.86% in the CA plot. Again the

average percentage of rainfall converted to runoff is almost double on the conventional tillage plot at 20,1%, while that for the CA plot was 11,7%. This shows that conservation agriculture significantly reduces run-off in a short period (2-3 years) even without the increased soil cover usually associated with CA systems.

In addition, the run-off collected from the CA plots were a lot 'cleaner' with less silt and soil

than for the conventionally tilled control plot. The two photographs below are indicative.

Right: Run-off collected in the bucket for the CA plot is clear while that for the conventionally tilled plot (far-right) is full of silt. These photographs were taken in mid-December 2016, on the same day, after a small rainfall event.

The presence of such programmes in rural communities not only

contributes toward the introduction of practices for improved productivity and resilience as well as increased food security but also contributes to a large extent to community building and social agency. Phumelele's story is a good example of a local person who is willing to work hard so that she not only feeds her family and makes an income for herself, but also plays a role in mentoring other women in her village to say that "poverty should never be an excuse if you are able to work. Whatever little you may have can go a long way if one is willing to learn and work with others". Her greatest wish is that her children also learn that they can make a living for themselves from farming.

Household 2: Ms. Zodwa Zikode

She joined the CA learning group in 2014 when it was first introduced in Ezibomvini. She is a widow and head of her household and stays with her granddaughter. She earns a living by selling snacks in

schools and the foster care grant for her granddaughter. She mentioned that her cabbages don't grow heads and she does not know what the cause could be, but suspects the very hot weather conditions they have had.

Above left and right: Zodwa Zikode in her vegetable garden. Water has to be carried by hand form a spring almost 1km away and her CA intercropped plot of maize and beans showing signs of heat

stress

Household 3. Ms. Ntombakhe Zikode

Mrs Ntombakhe Zikode is a 50 year old hard working woman. It has been 4 years since she joined the CA learning group. Apart from farming activities, she works on the Zibambele program under the Department of Transport and also does sewing to generate more household income. Below are pictures showcasing her garden, yields of maize and farming infrastructure and tools she has at her homestead.

Above left and right: Nombakhe's vegetable garden- mostly unplanted due to hot dry conditions and her maize field showing very patchy germination – again due to hot dry conditions at planting.

7.3.3 Mvuso (Alice) EC

The walkabouts took place in Alice at a co-operative (NPO Youth Development and Co-operative) land that has 6 members. Two of the members were present; Mrs Mandisa Mama and Mr Mncedi Madleni. The land is used mainly for maize production and currently the area planted is 4ha. They have dragline sprinkler irrigation and use animal traction for weeding. They do top dressing with LAN although there is inconsistency in spraying. Fertilizer used is kraal manure and they use OPV yellow maize seed.

Challenges they encounter;

- Capital not enough to buy better (ie Hybrid) seed
- Weeds
- Erosion
- Soil is too loose

They planted cover crops (legumes and fodder crops to protect the soil). It is their first time planting as a coop and they are interested in growing herbs as well because they believe herbs make more profit than maize. For now the coop members do all labour by themselves with a wish to hire more labour in a long run. The Department of Agriculture does the ploughing for them.

Maize after harvest is stored in tanks and during harvest time they hire people in the area to assist them, for a period over a month. The maize grows out to be uneven due to the issue of fertility. The

planted area is affected by erosion – soil being deposited on grassed water way, soil losing nutrients, depth of soil decreases over time which results in decreased in production. The germination was not so good due to high temperatures. Stover sold for silage - this is done for economic benefit. They rotate the maize with herbs and cabbage.

The farmers were advised to do furrow irrigation to evenly distribute water and allow for the use of rain water.

Above left and right: The irrigated maize plots for the cooperative members. Uneven germination and yellowing is visible – one due to high temperatures at planting and the other due to run-off and soil loss.

Each one of these walkabouts have through discussion, generated ideas for CSA practices that would be useful at that site. These are then presented to the focus group for discussion and combined with other suggested practices, including local or traditional practices noticed for prioritization by the participants.

For future use, a form has been designed for summarising information from the walkabouts- See appendix 5

8 COMMUNITY LEVEL PRIORITIZATION OF PRACTICES FOR EXPERIMENTATION

This exercise concludes the 2nd day of the first Climate Change dialogue workshop at community level and provides for an action plan and some initial farmer experimentation ideas. This is then be followed up by a 2nd workshop session where more in-depth prioritization is done and each individual in the group chooses a basket of CSA practices to work with.

The table below outlines the practices mentioned by each group, those introduced by the facilitation team as options (in red) and also those prioritized for experimentation by members of that learning group (community of practice)

		Commu	unity Level Prioriti	sation of Practices_Le	earning and experimer	ntation					
Province	Area	Village	Natl resources/ landscape	Water (manage and increase available water)	Soil health and fertility (incl Manage soil movement)	Crops	Livestock	Other	EXPERIMENTATION		MEASUREMENTS
										Yields, crop	
										growth	
										monitoring,	
KZN	Bergville	Thamela		RWH		Mulching		Savings groups	CA: intercropping,	seasonal review	
		us exposure to				Manure and					
	improved	practices				fertilizer		bulk buying			
										Yields, crop	
									CA: Intercropping, crop	growth	raingauges, runoff plots, weather
									roataion, cover crops-	monitoring,	station, gravimetric soil samples,
KZN	Bergville	Ezibomvini		Spring protection	Compost	Natural P&D control	Plant fodder		summer and winter	seasonal review	soil fertility, soil health
	- 0 -									Yields, crop	
										growth	
	CA learnin	g groups; 3-4yrs		RWH storage tanks;						monitoring,	Chameleon water mark sensors,
	(MDF)	g groups, 5-4yrs		-	Furrows	Tunnels			Tunnels	-	
	(IVIDF)			Jo-jos	Furrows	runneis			runneis	seasonal review	irrigation applied
										Yields, crop	
										growth	
				infield rainwater						monitoring,	Chameleon water mark sensors,
				harvesting	Contours	Mulching			Dripkits	seasonal review	irrigation applied
				dripkits	Diversion ditches				Trench beds		
				greywater; tower							
				gardens	Line levels				Mulching		
				infiltration pits/							
				banana circles	stone bunds				Mixed cropping		
				small dams							
				RWH storage;			Buying fodder,				
KZN	Estcourt	Thabamhlophe	River cleanups	Jojotanks	contours	Natural P&D control	licks	Fencing			
	Food secru	uity learning					Vaccintation,				
	groups 1-2	2yrs (LimaRDF)	Planting trees	Greywater man	stone bunds	mulching	deworming	Soil testing			
				Tower gardens and				Social: Nutrition,			
			Windbreaks	keyhole beds		CA, incl cover crops		mobile clinic			
								Discourage planting			
								nad slae of			
				Dripkits		Tunnels		marijuana			
				Diversion ditches		Crop diversificaiton		Indiguana			
				Swales		New varieties; incl tra	autional crops				
						Manure, woodash					
						Compost					
						Trenchbeds					
						Seed saving					
						Liquid manure					
53						Intercropping and cro	op rotaiton				

				Water (manage and	Soil health and						
			Natl resources/		fertility (incl Manage						
Province	Area	Village	landscape	water)	soil movement)	Crops	Livestock	Other	EXPERIMENTATION	-	MEASUREMENTS
								Value			
							Conserve fodder	addition(cooking and			
С	ALICE	UBLN	Remove aliens	RWH storage	Furrows and ridges	Trenchbeds	(hay)	preservaiton			
						Multipurpose plants	Decrease stock	Crop diversity for			
	A4F lernin	g network 2-3yrs	Plant vetiver	Dripkits		incl flowers	nos	nutrition			
						Intercropping nad					
						crop rotation	Vaccination				
						Mulch					
						Drought resistant					
						crops					
						Natural P&D control					
						CA					
			-								
IMPOPO	Tzaneen	Sekororo	Plant trees	RWH storage	Furrows and ridges	Mulching	Cotrolled grazing	Entrepreneurship			
				Grey water man:		Internet and	December of the sh				
			Manage cutting	towergardens and		Intercropping and	Decrease stock	tala ana dia n			
			of trees	keyhole beds		rop rotation	nos	Job creation			
				earth dams		Natural P&D control	Save fodder (bay)	Sovings groups			
						Multipurpose	Growing fodder	Savings groups			
				diversion ditches		plants, incl flowers	for livestock	biogas digesters			
				Undergounrd RWH		plants, inci nowers	TOT INCSCOCK	Planting calendars -			
				storage		Tunnels		winter(for bolting)			
						Heat resistant					
				Dripkits		cultivars					
						Indigenous varieties					
						Liquid manure					
						Trench beds					
						Eco-circles					
						Herbs					
						CA					
						Shallow trenches					
						Seed saving					

				Water (manage and increase available	Soil health and fertility (incl Manage						
Province	Area	Village	landscape	water)	soil movement)	Crops	Livestock	Other	EXPERIMENTATION	-	MEASUREMENTS
LIMPOPO	Mametje	Turkey (Sedawa Ext) Is exposure to	Plant trees	More boreholes and dams Greywater	Furrows and ridges	Tunnels	Plant fodder for livestock Save stover for	,	CA: Intercropping, crop roataion, cover crops- summer and winter	Yields, crop growth monitoring, seasonal review growth	raingauges,runoff plots, weather station, gravimetric soil samples, soil fertility, soil health Chameleon water mark sensors,
	improved p	•	0 0	management	Stone bunds	Trenchbeds	fodder	assist	Tunnels	monitoring,	irrigation applied
			Manage fires	Drip irrigation	Use crop residues and manre	Mulching	Buy fodder	Donations of seed	Dripkits	growth monitoring,	Chameleon water mark sensors, irrigation applied
			take care of indigenous plants	Tower gardens and keyhole beds		CA		Access to healthcare	Trenchbeds		
			Propagation of trees			gardening techinques		Set up Coops for Govt support	Mulching		
								Use animal traction	Mixed cropping		

For each village/group – a combined set of practices to be introduced, both through learning and mentoring and farmer experimentation has been compiled from all the information in the group sessions as well as the walkabouts. This is also negotiated with other stakeholders in each area and includes organisation presently implementing a project/programme. This means that the climate smart agricultural component can be overlaid onto existing rural development projects to increase the depth and scope of these programme.

The table below summarises these practices for each of the 7 villages.

				PRACTICES TO BE	INTRODUCED			
Province	Area	Village	Natl resources/ landscape	Water (manage and increase available water)	Soil health and fertility (incl Manage soil movement)	Crops	Livestock	Other
KZN	Bergville	Ezibomvini	Spring protection	diversion ditches/ furrows	Infiltration pits	CA, incl cover crops, legumes	Growing fodder	Saving for buying Jojo tanks
		Done- April 2018	Conservation of wetlands and streams	swales / cut off drains	Mulching	Liquid manure		Fencing
				Greywater man: tower gardens, keyhole beds		Tunnels		Reducing of burning of veld
				RWH storage - Jo-jos and underground		Intercropping		Burying disposable nappies
				Dripkits		Seed saving		
						trench beds		
						Natural P&D cont	rol	
						Crop rotation		
						Compost		
						New varieties		
KZN	Estcourt	Tabamhlophe	Windbreaks	diverstion ditches/ furrows	Mulching	CA, incl cover crops, legumes	Growing fodder	Saving for buying Jo- Jo tanks
		Done- April 2018		swales / cut off drains		Liquid manure		Fencing
Pactices prioritized by the group			Greywater man: tower gardens, keyhole beds		Tunnels		Nutrition	

			RWH storage and undergro		Intercropping		Bulk buying
			Dripkits		Seed saving		River clean -ups
					trench beds; shallow trenches		Discourage growth and sale of marijuana
					Crop rotation Natural P&D cont	rol	Mobile clinic
					Compost		MODILE CITILE
					New varieties		
EC	Alice	IBLN/Mavuso	Drip irrigation	Erosion control	Organic farming		Chameleons, run-off plots
			RWH		Planting herbs		
	learning an	practices for nd tation support	Furrow irrigat	ion	Tunnels		
					CA; with cover crops		
LIMPOPO	Tzaneen	Sekororo	Drip kits	Furrows and ridges	Tunnels	Fodder production for livestock	Savings groups
		ed practices for rning and	Underground	tanks	CA; with cover crops		Biogas digesters
		ntation support	Other RWH st	ructures	Planting herbs		
					Planting calendars		

					Shallow trenches		
					Natural P&D control		
					Seed saving		
LIMPOPO	Mametje	Turkey	Drip kits	Furrows and ridges	Tunnels	Fodder production for livestock	
		d practices for		Infiltration pits	CA; with cover crops		
		ning and ntation support		contours, wales, diversion ditches	trench beds, eco-circles, shallow trenched		
		Done- April 2018			Natural P&S control		
					Liquid manure Tower gardens		
					Soil fertility management		
					Seed saving and seedling production		

8.1 Collaborative activities in learning groups

The intention is for participants to implement new CSA ideas in their farming practices and to jointly assess the efficacy and impact of these ideas. Monitoring, both using visual and qualitative criteria as well as some quantitative measurements to provide for benchmarks to be used in some of the qualitative assessments are thus called for.

As these new ideas would invariably be ideas that farmers have not tried before, these techniques would need to be introduced through learning sessions and demonstrations. Many of the easier ideas such as mulching, mixed cropping and the like can be introduced in training and demonstration sessions for individuals to experiment with at their homesteads. There are however some practices/techniques that require both higher levels of skill and inputs to implement. Some examples here would be conservation agriculture, shade cloth tunnels for vegetable production and furrow irrigation. In addition introduction of practices are season specific in a number of instances.

A process has thus been put in place to set up demonstrations for the learning groups to pilot some of these ideas. These community level demonstration sites also provide a good opportunity for implementation of the quantitative measurements.

Below is an updated table indicating the demonstrations as they have been implemented during the reporting period.

Province	Category	Name of participants	Name of village	Date of planting
	Field cropping	Koko Maphori	Sedawa	05/12/2017
	Field cropping (CA)	Lerato Lewele	Mametja	06/12/2017
	(CA)	Seemole Malepe	Botshabelo	07/12/2017
		Christina Tobejane	Sedawa	11 – 15 Dec 2017
	Gardening	Norah Malepe	Mametja	11 – 15 Dec 2017
	(Tunnels, drip kits	Mariam Malepe	Botshabelo	11 – 15 Dec 2017
Limpopo	– trench	Matshego Shai	Turkey	9-12 April 2018
	beds, mixed	Mabiletse Mogofe		
	cropping,	Sarah Mohlala		
	mulching)	Cheune Mailula	Lourene	9-12 April
	malennig)	Josias Shai	(Sekororo –	
		Lydia Sechube	LimaRDF)	
		Rosina Mahlungu		
	Field cropping	Ntombake Zikode	Eqeleni	20-24 Nov 2017
	(CA)	Phumelele Hlongwane	Ezimbomzini	20-24 Nov 2017
	(CA)	Phumzile Zimba	Mhlwazini	20-24 Nov 2017
KwaZulu-		Ntombakhe Zikode	Eqeleni	29-31 Jan 2018
Natal	Gardening	Phumelele Hlongwane,	Ezibomvini	29-31 Jan 2018
	(Tunnels, drip kits	Zodwa Zikode, Nombono		
	– trench	Dladla		

Table 16 : Participants i	n quantitative measurements for trials; KZN and Limpopo
Tuble to Traitiepulles	

	beds, mixed	Thembi Xaba, Zanele	Mdwebu –	29-31 Jan 2018
	cropping,	Ngobese/Winnie	Tabamhlophe	
	mulching)	Dlamini, Gugu	_LimaRDF	
		Majola/Nokuthula Sibisi		
		To Ntuli (Uthando	Good Homes-	29-31 Jan 2018
		LukaGogo Group)	Tabamhlophe-	
			LimaRDF	
EC	Field cropping	Ms Mandisa Mama and	Mavuso	Aug-Sept 2018
	(CA, furrow	Mr Mncedi Madleni		
	irrigation	Xolisa Dwane	Mxumbu	
		Siyabulela <mark>Gcungqami</mark>	Mxumbu	
	Gardening	Lingiswa Mangaliso	Alice	End April 2018, Aug-
	Tunnels, drip kits	Xoliswa Mangcola	Healdtown	Sept 2018
	– trench	Xolisa Dwane	Mxumbu	
	beds, mixed	Siyabulela <mark>Gcungqami</mark>	Mxumbu	
	cropping,	Busisiwe Mgangxela	Mqayise	
	mulching)	Bulelani Jantjie	Mayipase	
	Infiltration pits	Sibusiso <mark>Globinampku</mark>	Ilizwi lamafama	
	Swales	Aviwe Biko	Ilizwi lamafama	
	Contours	Abongile Mfecane	Ilizwi lamafama	
		Nomasoma Njacu	Ilizwi lamafama	
		Phindiwe Msesiwe	Ilizwi lamafama	

8.1.1 Experimentation with vegetable production and tunnels

Criteria for selection of the participants who would implement these demonstrations, at their homesteads, but with and for the groups were discussed with the learning group participants and the following criteria were used:

- Should be likeable
- Should be a volunteer
- Should be home most of the time
- Must be an active gardener
- Must reside in the close proximity of a source of water
- The source of water should somewhat be reliable
- Must be good with people
- Must have a vision for the benefit of the group
- Willingness to make tunnels

Training sessions in building of the shade cloth tunnels were held in KZN (end Jan 2018) and Limpopo (mid April 2018). The organisation Socio Technical Interfacing assisted with supply of the kits for the tunnels and drip irrigation as well as providing the three- day training in construction. A total of 8 demonstration tunnels, with 3 sets of drip kits each have been built in each province.

A few pictures are shown below indicative of the three- day process for each group. The report for the Bergville tunnel construction process in included in Appendix 7.

Above Left: On of the 4-6m tunnels completed by community members. Black plastic has been used to temporarily cover the three long trench beds constructed inside the tunnel. Above right: One of the drip kits set up outside the tunnel (another is inside for comparative purposes.

A further session was held with each of the learning groups to provide learning and mentoring in the experimentation process related to each tunnel – including construction of trench beds, mulching, mixed cropping and liquid manure. The experiment consists of setting up this process inside and outside the tunnel for comparative purposes. Chameleon water sensors have been installed for three participants in KZN and Limpopo respectively and a qualitative monitoring process has been put in place for the smallholder participants.

8.2 Individual experimentation

8.2.1 Conservation Agriculture experimentation- Limpopo

The first round of planting farmer level CA trials/experiments, was organized as a training workshop where participants worked together to plant a trial after theoretical and technical details for this process were introduced and discussed. Attending participants were given seed at the end of each session to go and plant their own individual field trials (maize, beans, cowpeas, sunflower, millet and winter cover crops (black oats, fodder rye and fodder radish).

The experimental sites were established in Sedawa, Mametja and Botshabelo. Below is a list participants who have planted CA trails in the 2017/2018 growing season.

Name of participants	Village name	Date	Replanted (Yes or No)
Khomotso Malepe	Sedawa	14/12/2017	Yes

Table 17: Participants in the individual CA farmer experimentation in Limpopo

Maakopila Malepe	Sedawa	14/12/2017	Yes
Makgale Malepe	Sedawa	14/12/2017	Yes
Alex Mogopa	Sedawa	14/12/2017	Yes
Nthara Seotlo	Sedawa	14/12/2017	Yes
Nkone Maphori	Sedawa	14/12/2017	Yes
Mpelesi Sekgobela	Sedawa	14/12/2017	Yes
Refilwe Mogale	Sedawa	14/12/2017	Yes
Mmago Mimi	Sedawa	14/12/2017	Yes
Victoria Malepe	Sedawa	14/12/2017	Yes
Tash Masete	Sedawa	14/12/2017	Yes
Joyce Masete	Sedawa	14/12/2017	Yes
Josphina Malepe	Sedawa	14/12/2017	Yes
Joyce Mongadi	Sedawa	14/12/2017	Yes
Meisy Mokwena	Sedawa	14/12/2017	Yes
Norah Malepe	Sedawa	14/12/2017	Yes
Thamara Malepe	Sedawa	14/12/2017	Yes
Christina Thobejane	Sedawa	14/12/2017	Yes
Lethabo Sekgonbela	Mametja	17/12/2017	No
Selina Sekgonbela	Mametja	17/12/2017	No
Melta Sekgonbela	Mametja	17/12/2017	No
Nancy malepe	Mametja	17/12/2017	No
Lerato Lewele	Mametja	17/12/2017	No
Manteng Mametsa	Mametja	17/12/2017	Yes
Francinah Shai	Mametja	17/12/2017	Yes
Rebecca Mmola	Mametja	17/12/2017	Yes
Jenny Mmola	Mametja	17/12/2017	No
Andronica Morema	Mametja	17/12/2017	No
Monica Malepe	Botshabelo		Yes
Mariam Malepe	Botshabelo		Yes
Alex Mogopa	Botshabelo		Yes
Seliki	Botshabelo		Yes
Koko Mokgotho	Botshabelo		Yes
Toakele	Botshabelo		Yes
Nthara Nthlamo	Botshabelo		Yes

The rainfall records from the experimental sites have shown that the total precipitation from early December to mid-January was 20 mm. This has resulted in poor or zero germination in most of the CA plots. In early January, we replanted the CA experimental trials in Sedawa and Botshabelo and discontinued the experimental trial in Mametja and moved it to the other side of Sedawa. At each of the meetings seed was distributed to attending participants to go and replant their CA trails.

Some of the participants planted, while others kept the seed for the next season. Those who replanted experienced the same problem, seed did not germinate, and where it germinated the germination was patchy. There were no rains in January and February in the area, again this has resulted in crop failure in both experimental plots and baby sites in homesteads

Above left and right: Seomole Malepe's field in Botshabelo showing patchy germination and very little growth at the end o Jan 2018

However, the situation was different for those who have access to irrigation, their crops have germinated and grown very well. There was no replanting done at Turkey village.

Above left to right Mpelesi Sekgobela's homestead in Sedawa village – Her intercrop trial early in the season -showing maize-bean and maize-cowpea intercrops, her maize singe crop block later in the season and Mrs Sekgobela standing in an intercrop plot of maize and summer cover crops (millet and sunflower)

In addition 3 researcher managed trial plots were also established to take samples and set up instrumentation for more quantitative measurement. The trials were established in 3 fields, situated in Sedawa (Koko Maphori), Mametja (at Lerato Lewele) and Botshabelo (Seemole Malepe).

The trials were planted by members of the learning group, and this was organized in the form of a workshop of CA as the trial sites are to be used as demonstration sites. Soil fertility samples were taken at these plots, as well as gravimetric water soil samples. Run-off plots and rain gauges were also installed.

The trial sizes were kept at the same size for all three participants and the layouts are as shown in the diagrams below. The size of individual plots is 10 m^2 and the total trial size is 1000 m^2 .

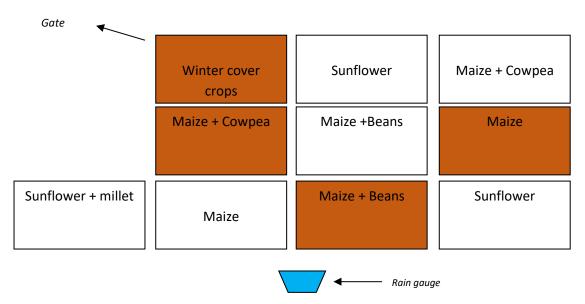


Figure 4: CA trial layout for Koko Maphori's field (Plots highlighted in brown is where runoff plots have been installed)

There was good germination of cowpeas, maize and beans, respectively. However, due to high temperatures and low rainfall during December, the maize wilted in some of the plots and only cowpeas were visible. Winter cover crops did not germinate at all. These plots were replanted in January – to no avail, as even less rain fell during January-February.

8.2.2 Tunnel and gardening experimentation _KZN- Ezibomvini

During the second CC workshop at community level the learning groups further prioritized, as a group and as individuals some of the e[practises they would experiment with.

As an example the Ezibomvini learning group worked with gardening experimentation linked to their tunnels and doing farmer level trials both inside and outside the tunnels and including, trench beds, mixed cropping (including herbs) and mulching. These practices were introduced and demonstrated.

Out of 29 farmers who were present for the Ezibomvini learning group (23 March 2018), 20 farmers considered trench beds as their priority. Farmers who chose trench bed will therefore also try out mixed cropping and mulching. Most of the farmers from the nine left already has trench beds in their homesteads. The following is the list of participants who considered a trench bed as their first priority.

 Table 18: Individual experimentation with trench beds, mixed cropping and mulching for the Ezibomvini Learning Group

 Number of the experimentation with trench beds, mixed cropping and mulching for the Ezibomvini Learning Group

Name	Village Name
21. Jabulile Nkabinde	Ezibomvini
22. Fikile Hlongwane	Ezibomvini
23. Nonhlahla Zikode	Ezibomvini

24. Landiwe Gamede	Ezibomvini
25. Gcinekile Zikode	Ezibomvini
26. Hlengiwe Ndaba	Ezibomvini
27. Busisiwe Zikode	Ezibomvini
28. Alfred Gumede	Ezibomvin
29. Velephi Zimba	Ezibomvini
30. Sizeni Dlamini	Eqeleni
31. Lndokuhle Hlongwane	Ezibomvini
32. Conastance Hlongwane	Thamela
33. Thulile Zikode	Eqeleni
34. Sibongile Zikode	Eqeleni
35. Dambi Ntuli	Thamela
36. Zanele Hlongwane	Thamela
37. Thokozile Mpambo	Eqeleni
38. Nomalanga Khumalo	Eqeleni
39. Mvelo Zikode	Ezibomvini
40. Sdudla Sibiya	Ezibomvini

Farmers were provided with sample quantities (small packets_5ml) of a variety of seeds including new winter vegetable varieties and herbs for their experimentation. The seed and seedlings provided were lavender, Aloe Vera, moss curl parsley, flat leaf parsley, coriander, garlic chives, leeks, Chinese cabbage, Kale, and spring onions.

These experiments are to be monitored by both the farmers and the facilitation team and a review of this process held by the end of the growing season. The process will also be implemented in the other villages where CoPs' have been set up.

9 CAPACITY BUILDING AND PUBLICATIONS

Capacity building has been undertaken on three levels:

- Community level learning
- Organisational capacity building
- Post graduate students

9.1 Community level learning

This has been discussed at length in previous sections. In summary learning workshop have been conducted in 7 villages across three provinces (EC, KZN and Limpopo) with a total of 208 participants including a number of topics including; scientific and community level understanding of climate change and weather variability, impact of climate change on production, adaptive measures, introduction to a range of CSA practices, farmer level experimentation and practical learning for a range of CSA practices

9.2 Organisational capacity building

Within 3 NGOs (MDF, Lima RDf and AWARD) capacity of field staff to facilitate and work with climate change concepts and facilitation of CSA at community level has been enhanced through:

- Collaborative design of workshop outlines and facilitation processes
- Training sessions in CC and CSA facilitation, including appropriate CSA practices
- Mentored facilitation of CC and CSA workshops
- Field staff managed facilitation of learning events
- Setting up of CoPs and
- Attendance at stakeholder CoP processes related to this work (Agroecology network in Limpopo, Rangeland management cross visit with UCPP in Eastern Cape and regenerative agriculture symposium in the Free State.
- In addition inputs have been provided for the Conservation Agriculture policy document for DAFF

9.3 Post graduate students

Below is a summary of the postgraduate studies and progress made for 2017-2018

- Finalisation of theses:
 - Sanelise Tafa: Agric Economic Masters- University of Fort Hare; July 2017. Farm level cost-benefit analysis of conservation agriculture for maize smallholder farmers in Okhahlamba Municipality in Kwa-Zulu Natal Province, South Africa.
 - Paper: Farm Level Cost-Benefit Analysis: The evaluation of economics of conservation agriculture in Bergville Town in Kwa-Zulu Natal Province of South Africa (Invitation to present: Center for Integrated Agricultural Systems (CIAS) at the University of Wisconsin- "The Agroecology of Development: Community Solutions in Post-Apartheid South Africa" event on November 9th, 2017)

- Khethiwe Mthethwa: B Agric Honours Univeristy of KwaZulu Natal. November 2017. *Investigating the sustainability of adoption of conservation agriculture by small-scale farmers in Bergville*
- Progress: Final proposals and research methodology
 - Palesa Motaung: M Agric -University of Pretoria. Evaluating the restorative effect of conservation agriculture on the degraded soils of the upper Drakensburg area of Bergville, KwaZulu-Natal using qualitative versus quantitative soil health indicators
 - Mazwi Dlamini: MPhil UWC_PLAAS. Factors influencing the adoption and nonadoption of Conservation Agriculture in smallholder farming systems, and the implications of these for livelihoods and food security in Bergville, Kwazulu-Natal
- Progress: Initial proposals and research methodology
 - Khethiwe Mthethwa: M Agric University of KwaZulu Natal; January 2018. *The* contribution of Climate Smart Agriculture (CSA) practices in adapting to climate change: The case of smallholder farmers in KwaZulu Natal.

9.3.1 Sanelise Tafa:

Summary of Paper

On-farm economic benefits between conservation and conventional agriculture are not thought to be very pronounced. General inferences can be made, however, a comprehensive assessment of the net private benefits from greater use of conservation tillage is necessary. With the use of Gross Margin as well as appraisal indicators such as Net Present Value, Benefit Cost Ratio and Internal Rate of Returns, the study revealed that there are more incentives for adoption of conservation agriculture over conventional agriculture. The study therefore recommends that the promotion of conservation agriculture should be encouraged and this is promising more incentives in the long-run

He used the following conceptual framework for his economic analysis

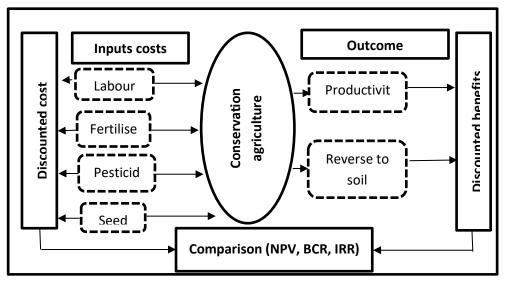


Figure 1: conceptual framework on cost benefit of conservation agriculture Source: Adapted from Pannell *et al.* (2014)

Using interviews with 6 smallholder farmers in the Bergville area as well as quantitative and qualitative data from Mahlathini's GrainSA conservation Agriculture, smallholder innovation programme he achieved the following results – as indicated in the three tables below

Year	Conservation agriculture (t/ha)	Conventional agriculture (t/ha)
2013	3.26	3.39
2014	4.12	5.4
2015	4.45	3.05

Table 1: The average yield from the sampled respondents of 2013-2015

Source: Kruger (2016)

Table 2: Comparison of Cost and Benefits of trial plot and control plot

Variable	Т	rial Plots	(Rands/0.14ha)	Control plots (R/0.8ha)			
Variable cost	Q	P/Unit	Total Cost	% of cost	Q	P/Unit	Total Cost	% of cost
Maize seed	3.5	104	364	16%	4.8	104	499,2	11%
Fertiliser	35	9.2	322	14%	93	5	465	10%
Herbicide	0.42	109	45,78	2%				
Pesticide	0.014	875	12,25	1%				
Ploughing					0.8	645	516	11%
Labour	5	250	1250	56%	10	250	2500	53%
Discing					0.8	537.5	430	9%
Sowing	5	50	250	11%	0.8	376.25	301	6%
	Su	b-total	2244,03	100%	Sub-tota		4711,2	100%
Contingency	at	4%	89,7612	Conting	ency at	4%	188,448	
Total Cost			2154,2688	Tota	l Cost	4522,752		
Gross Revenue	3,94	2500	9850		3,35	2500	8375	
Gross Margin			7695,7312				3852,248	

Source: Author's own computation

Table 3: The results of CBA

Tillage system	Parameter	10-year period Discounted at 8%	10-year period Discounted at 10.5%
Conservation	NPV	52694	46550
agriculture	IRR	25%	25%
	BCR	3,85	3,78
Conventional	NPV	20446	18177
agriculture	IRR	35%	35%
	BCR	1,56	1,55

Source: Author's own computation (NPV=Net Present Value, IRR=Internal rate of return and BCR=benefit cost ratio)

From these results Mr Tafa concluded that "Conservation agriculture is an amalgamation of a number of sustainable practices developed over the last century, packaged under the three guiding principles; viz., no-tillage, mulching, and crop rotation. Conservation farming is an arrangement that incorporates the three guiding principles to run concurrently and generate both physical-biological and socioeconomic benefits to the farm system. Yet, these benefits of CA are not without challenges. For instance, yield benefits take long time to materialize of which smallholder farmers cannot afford income sacrifices in the short term, even if there is a promise of greater benefits in the long run.

Although in the smallholder setting, CA has high initial investment costs compared to conventional agriculture, CA holds a high gross margin (GM) compared to conventional agriculture. There are many factors that contributed to the level of GM in all the tillage systems practiced, one being the lowest operating cost in CA compared to conventional agriculture.

When using appraisal indicators (NPV, BCR, and IRR) the study projected a 10-year period at 8% and 10.5% discount rates. All the appraisal indicators confirmed the viability of CA over the conventional agriculture".

9.3.2 Khethiwe Mthethwa:

Summary of paper

Khethiwe's abstract for her Honours paper is presented below:

"Conservation Agriculture is one of the concepts that have been introduced as a way of promoting a sustainable agricultural system. Whilst Conservation Agriculture (CA) is being promoted but its adoption rate among smallholder farmers has been very slow. Even after adoption, there are concerns that farmers may not be able to sustain its adoption. This study set out to investigate the sustainability of adoption of CA by small-scale farmers in Bergville community - Ezibomvini. This study adopted both qualitative and quantitative approach. Additional data for this study was collected through Focus Group Discussions (FGDs). The quantitative data was analysed through the use of SPSS, while qualitative data was analysed through emerging themes from the data. The study found that farmers have gained necessary skills and knowledge to be able to sustain the adoption of the CA, suggesting that farmers can stand on their own and continue to practice the CA even in the absence of the CA promoters. It was also found that farmers who adopted the CA are willing to share their experiences and knowledge with other farmers in the area. This increases the likelihood to expand the adoption of CA. More research needs to be done to find out communication strategies that can be used to communicate new innovation, which is technology and knowledge-intensive like CA to small-scale farmers who are not educated. It is recommended that more research be undertaken to find out the accurate result if farmers are willing to extend mixed cropping in their plots. Further research also needs to be conducted to find out more about factors which were influencing small-scale farmers to abandon CA practices".

Her problem statement and objectives for her study were defined as the following: "The role of Non-Government Organization (NGO) inputs support is assumed to be a catalyst in the initial CA uptake, especially by poor and vulnerable households. A number of farmers who had adopted CA during the active promotion of CA eventually abandon the innovation in the absence of support from NGOs. Though, there is substantial evidence that CA results in improved soil health, fertility and yields over time. The response of smallholder farmers to CA is still not clearly defined. Therefore, it is necessary to conduct a study that looks into the adoption of CA to better inform policymakers regarding challenges faced by adopters of CA but more important about the factors that increase CA adoption.

Research Objectives:

- Farmer's knowledge and skills based on CA practice
- Farmer's perspectives towards the benefits to adoption of CA

Sub-problem:

Four research sub-problems were developed to address the research questions.

- What are the characteristics of sample farmers?
- Are selected farmers skilled and knowledgeable about CA?
- Do selected farmers follow the CA principles?
- What are the experienced advantages of practicing CA?

Some of the results she obtained from her study are presented below as examples

Regarding knowledge and skills to continue CA implementation, most farmers strongly agreed that CA training improved their knowledge in CA, a few number of farmers agreed that CA improved their knowledge and a few were neutral (Refer to figure 1.1). This shows that CA training played a huge role in improving farmers' knowledge in CA. Most farmers are confident that their knowledge has improved through CA training and this means they have gained required knowledge to sustain CA practice.

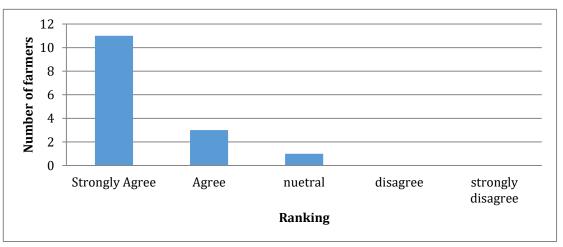


Figure 1: The Graph showing ranking of effectiveness of CA training in improving farmer's knowledge on CA (Survey output, 2017)

Regarding the benefits of CA, most farmers reported that CA increases yields (Figure 1.2). A few farmers are able to tell if the soil is fertile or not. Soil colour is one of the characteristics which farmers

use to determine soil health in the soil. In terms of fertilizer and herbicides application, all the farmers observed that CA improved their soil fertility due to the fact that their yields have increased.

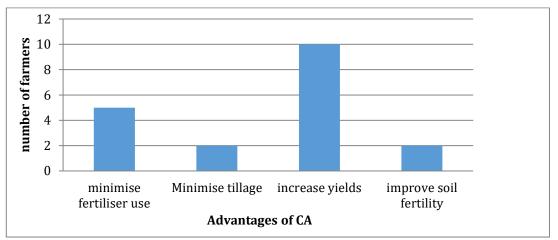
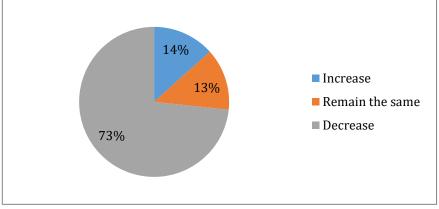



Figure 2: Figure 5.2: The graph showing CA knowledge gained by farmers (Survey output, 2017)

Further advantages mentioned is better weed control. The small pie chart below indicates the farmers' responses.

Figure 3: A pie chart showing the contribution of mixed cropping to weed control (Survey output, 2017)

But even given this response, not all farmers were prepared to continue and expand their mixed cropping practices (inter cropping of maize with legumes and cover crop planting) as shown in the small table below. Only around 535 of participants would continue with mixed cropping although 73% have noted positive changes in both yield and weed control

		Frequency	Percent
Valid	yes	8	53.3
	no	7	46.7
	Total	15	100.0

Table 1: Showing the willingness of farmers to extend mixed cropping in their fields (Survey output, 2017)

She concludes that the selected farmers have a capability to maintain the practice of CA now and in the future. Generally, the selected farmers have a better knowledge and skills of CA, indicating likelihood that farmers can sustain the CA practice. Considering the principles of CA: minimum soil disturbance, leaving soil residues and crop diversification, farmers indicated that they are comfortable with these principles as they minimize the use of inputs, save time and reduce soil erosion.

She recommended that further research needs to be conducted to find out communication strategies that can be used to communicate new innovations, which are technology and knowledge-intensive such as CA, to small-scale farmers who are not educated. More research needs to conducted with farmers who have abandon CA, to find out more about factors which influenced this decision.

Khethiwe's Masters proposal outline

Research Topic

The contribution of Climate Smart Agriculture (CSA) practices in adapting to climate change: The case of smallholder farmers in KwaZulu Natal.

The specific objectives are:

- To understand the historical experience regarding production calendar compared to current situation.
- To assess the CSA practices that are currently can be employed by small-scale farmers in response to the changes.
- To assess the factors influencing the selection of these practices
- To determine the benefits of employing CSA practices regarding climate change adaptation.

Research Methodology

The literature review will be conducted to guide the study through drawing researchable relationships. Both qualitative and quantitative data will be collected and analyzed. Seasonal Map, Timeline, Individual field visits, questionnaires and focus group discussions will be used to collect data. The study will be conducted in Bergville and Ntabamhlophe of KwaZulu Natal. There are three communities from Bergville which is Ezibomvini, Eqeleni and Thamela. There are two communities in Ntabamhlophe, which is Good homes and Mdwebu community. A total number of 50 respondents will be selected, 30 respondents from Bergville and 20 respondents from Ntabamhlophe. The study will investigate small-scale farmers who are practicing a wide range of practices in their homestead garden as a result of improving food security for households.

9.3.3 Mazwi Dlamini

Masters proposal outline and methodology.

Mazwi's abstract for his proposal reads as follows: "Subsistence agriculture continues to play a pivotal role in rural areas across developing countries in the world as means to food production and income generation. South Africa is no exception with white maize a staple food for more than 70% of the population in the country and yellow maize mostly used for livestock feed, livestock is a big part of smallholder agriculture (DoA, 2004). Maize plays a big role in South African diets contributing

35% of carbohydrates, 15% fat and 31% of proteins (Mqadi, 2005). Maizenis mostly produced at the expense of natural resources; soil erosion, poor soil health; coupled with high costs and poor yields threatening food security. Conservation Agriculture has been introduced as an alternative through resource saving, efficiency of inputs, improved use of natural resources, livestock integration and increased yields (Silici, 2010). Despite efforts in spreading CA there has been issues with adoption, this study attempts to identify factors influencing farmers' decisions the adoption and non-adoption of CA and impacts those decisions have on livelihood activities for food security. This research is informed by the Sustainable Livelihoods Framework where questionnaires and focus group interviews will be administered on 30 participants"

A summary of Mazwi's data collection tools and research questions is provided in the table below.

Research question	Sources of data to answer the question	Research methods for collection and analysis of data		
1. Which CA practices are mostly adopted by smallholders in the Bergville area?	Quantitative data on adoption and non-adoption of the CA package promoted by MDF	Questionnaire survey of 30 farmers, 20 adopters and 10 non-adopters; analysis using SPSS		
2. What factors influence the adoption and/or non- adoption of CA in smallholder farming systems?	Qualitative data on views of farmers	In-depth, semi-structured interviews with 12 farmers (6 adopters, 6 non-adopters); thematic analysis Two focus group discussions, one with adopters (6 participants) and one with non-adopters (6 participants); thematic analysis		
3. What adaptations do smallholders make to CA, if any, and what are the reasons for these?	Quantitative data on adoption and non-adoption of the CA package promoted by MDF Qualitative data on views of farmers	Questionnaire survey of 30 farmers, 20 adopters and 10 non-adopters; analysis using SPSS In-depth, semi-structured interviews with 12 farmers (6 adopters, 6 non-adopters); thematic analysis Two focus group discussions, one with adopters (6 participants) and one with non-adopters (6 participants); thematic analysis		
4. What are the measurable impacts of CA on productivity in smallholder farming systems?	Data from MDF or Grain SA or other source?	Summary of existing data from MDF or Grain SA or other source?		
5. What are the potential impacts of CA on the livelihoods and food security of rural households in the Bergville area?	Quantitative data on existing sources of livelihood and food security status Qualitative data on views of farmers	Questionnaire survey of 30 farmers, 20 adopters and 10 non-adopters; analysis using SPSS In-depth, semi-structured interviews with 12 farmers (6 adopters, 6 non-adopters); thematic analysis Two focus group discussions, one with adopters (6 participants) and one with non-adopters (6		

Table 1: Summary of data collection tools and analysis

He has finalised his literature review on his methodology and will spend the upcoming year in gathering and analysing data.

9.3.4 Palesa Motaung

Masters proposal outline and methodology

Palesa's hypothesis aims and objectives for her study are outlined below:

Hypothesis

Null Hypothesis:

CA is seen as a method that can build up or restore degraded soil. This process is known to take 7 years. However, a mixed type of cover cropping system rotated with a cash crop may shorten the entire process of rehabilitation and restoration to a period of 3 to four years

Alternative Hypothesis:

A leguminous inter-cropping system under yearly rotation may be as effective at increasing the pace at which a multi-specie cover cropping system restores degraded soil.

Aims of the study

- 1. The aims of study are to determine the impact of inter-cropping sugar beans-maize and cowpeas-maize on selected soil physical, chemical and biological properties as a minimum data set
- 2. Assess the sensitivity of qualitative and quantitative soil quality indices to determine overall soil health

Specific Objectives Include:

- To select the best combination of crops and management systems that can improve soil physical properties
- To select the best combination of crops and management systems that can improve soil chemical properties
- To select the best combination of crops and management systems that can improve soil biological properties

The study spans across 8 villages all within the Bergville area. These villages were chosen because they;

- Are all under the CA-Farmer Innovation Programme to introduce CA to smallholder farmers
- Are host to farmers who adopted CA either in 2014, 2015 or 2016.
- Are hosts to farmers who are practicing conservation alongside conventional tillage on maize plots
- Are hosts to farmers who are inter-cropping maize with a legume (soybeans or cowpeas) and rotating their plots yearly.

Within each village, farmers were selected who planted at least one plot of maize + beans, maize + cowpeas and maize only plots in the 2016/17 year.

Treatments were chosen for the following reasons:

- a) These were the treatments most widely practiced and available amongst the chosen farmers; i.e. a high proportion of the chosen farmers planted 2/3 or 3/3 of the chosen treatments in the previous planting season.
- b) The chosen treatment allows us to investigate the CA practice of intercropping maize and a legume versus the conventional practice of mono-cropping
- c) An "uncultivated" soil sample will be taken adjacent to the cultivated plots which will serve as a benchmark for the areas natural soil status.

d) Information on whether the farmers have planted cover crops has also been collected and it may be used to add insight into the possible findings on the soil status

The table below indicates her participant selection.

Table 1: participant selection and criteria

			Co	nserv Tillag		Convent ional Tillage	(control)		Yield (t/ha)		
Yea	Village	Farmer	m	m	m	maize	undistur	maiz	maize	beans	cover
r			+	+c			bed	е	(CT)		crops
			b				adjacen	(CA)			
							t plot				
201	Ezibomv	Phumelele	3	1	4	900m ²	Yes	8.27	9.69	1.818	1
4	eni	Hlongwane									
201	Ezibomv	Nthumeni	5	1	2	560m ²	Yes	2.77	2.05	0.62	0
4	eni	Nkabinde									
201	Mhlwazi	Zimba	4	4		350m ²	Yes	5.58	4.089	0.34	2
4	ni	Mantombi						8			
201	Vimbuk	Sbongile	1	1	2		Yes	*515	*515 1.76		0
4	halo	Mpulo						kg			
201	Ndunwa	Zondo	2	1	1	600m ²	Yes	3.79	1.9375	1.02	0
5		Matozo									
201	Stulwan	Getty Miya	2	1	1		Yes	1.39	*129.9	0.48	1
5	е								9 kg		
201	Ngoba	Sebenzile	1		1	810m ²	Yes	2.95	0.34	0.22	1
5		Hlongwane									
201	Ndunwa	Shiwiye	4	3	2		Yes	2.26	*109.2	0.49	1
5		Mazibuko							kg		
201	Ezibomv	Ntombenhl	2		2		Yes	5.82	167.2	2.34	0
6	eni	е							kg		
		Hlongwane									
201	Ezibomv	Mantombi	3	1			Yes	2.61	143.39	5.64	0
6	eni	Mabizela							kg		
201	Cornfiel	Miya	2	3		2236m ²	Yes	0.27	1.34	0	0
6	ds	Mdumeni						1			
201	Nsuka-	Busi	2	2			Yes	4.76	109.83	2.44	0
6	Zwelish	Hlatshwayo							kg		
	а										

She is to work with a number of quantitative and qualitative soil health indicators within the following experimental design.

This study will be a field experiment with 5 treatments:

- 2 management systems: conventional and conservation tillage,
- 2 inter-cropping systems; bean-maize and cowpea-maize,
- Mono-cropping versus inter-cropping,
- Uncultivated plot serving as a benchmark for degradation

Arranged in a factorial arrangement of a split-plot design. Each treatment is replicated 12 times on 5m × 5m blocks

Quantitative soil quality indicators to be used are summarised in the table below

Table 2: Soil qua	Relative	Quantitative	Type of	Relative	Test	Link between Indicator
Function	Weight	Soil Quality	Indicator	Weights		and Soil Process/Function
	U	Indicators		Ū		
Nutrient Cycling	0.2	Available P	Biological	0.5	Olsen-P	Extractable Phosphorus is a measure of phosphorus (P) availability to a crop. P is an essential plant macronutrient, as it plays a role in photosynthesis, respiration, energy storage and transfer, cell division, cell enlargement, and several other process in plants (Moebius-Clune,
		рН	Chemical	0.5	pH-KCl method using a pH meter	2016). Soil pH is a measure of how acidic the soil is, which controls how available nutrients are to crops. If pH is too high, nutrients such as phosphorus, iron, manganese, copper and boron become unavailable to the crop. If pH is too low,
						calcium, magnesium, phosphorus, potassium and molybdenum become unavailable (Moebius- Clune, 2016).
Filtering and Buffering	0.2	Soil Organic Matter	Transcends all 3 indicators	0.7	Percent organic matter is determined by loss on ignition, based on the	Soil organic matter (OM) is where soil carbon is stored. OM acts as a long- term carbon sink, and as a slow-release pool for nutrients. It contributes to ion exchange capacity

Table 2: Soil quality indicators

					change in	(nutrient storage), nutrient
					mass after a	cycling, soil aggregation,
					soil is	and water holding
					exposed to	capacity, and it provides
					high	nutrients and energy to
					temperature	the plant and soil microbial
					(500 °C or	communities (Moebius-
					932°F) in a	Clune, 2016). SOC is one of
					furnace	the most important
					(Moebius-	constituents of the soil due
					Clune, 2016)	to its capacity to affect
						plant growth as both a
						source of energy and a
						trigger for nutrient
						availability through
						mineralization (USDA-
						NRCS, 2009).
		Electrical	Chemical	0.3	Electrical	EC does not directly affect
		Conductivity			conductivity	plant growth but has been
					meter	used as an indirect
						indicator of the amount of
						nutrients available for
						plant uptake and salinity
						levels (USDA-NRCS, 2011).
Physical	0.2	Bulk Density	Physical	1.0	The	Bulk density is an indicator
Stability					Cylindrical	of soil compaction. Bulk
and					Core	density typically increases
Support					Method	with soil depth since
					(NCRS Soil	subsurface layers have
					quality test	reduced organic matter,
					kit guide)	aggregation, and root
						penetration compared to
						surface layers and
						therefore, contain less
						pore space (USDA-NRCS,
						2011).
Biodiversity	0.2	Soil	Biological	1.0	[Solvita -	A measure of the
and Habitat		Respiration			CO ₂ Burst	metabolic activity of the
					Method]	soil microbial community.
						It is measured by re-
						wetting air dried soil, and
						capturing and quantifying
						carbon dioxide (CO2)
						produced (Moebius-Clune,
		1	1			2016).

Mahlathini Development Foundation

Water	0.2	Available	Physical	0.5	Soil porosity and
Relations		Water			particularly macro-
		Capacity			porosity (the number of
		(AWC)			large pores) influences the
					movement of air and water
					in the soil. Soils with good
					structure have a high
					porosity within and
					between (USDA-NRCS,
					2011).
		Water stable	Physical	0.5	Measurement of soil
		aggregates			aggregate stability gives a
					useful index of the
					susceptibility of the soil to
					structural degradation and
					visual assessment of the
					soil profile is a valuable
					method of assessing the
					need for physical
					remediation (Cameron et
					al, 1998).

Qualitative soil quality indicators:

The farmers in Bergville who have adopted CA into their farming practices use a Visual Soil Assessment Manual for Conservation Agriculture developed by Grain SA with Mahlathini Development Foundation. The manual looks at properties such as soil type; soil crusting; soil structure; porosity; depth; presence of mottles; presence of tillage pans and earthworm count. The manual uses a score between 0 and 2. 0 indicates poor conditions while 2 indicates good conditions. Table 3 below is a typical checklist found on the Mahlathini Visual Indicator manual.

Table 3: Mahlathini Visual Indicator checklist. Mahlathini Development Foundation

Visual indicator of Soil Quality	Visual Score (VS)	Weighing	VS Ranking
	0 = Poor conditions		
	1 = Moderate conditions		
	2 = Good conditions		
Soil Structure		Х3	
Soil porosity		× 2	
Soil colour		× 2	
Number and colour of soil mottles		× 1	
Earthworm counts		× 2	

Mahlathini Development Foundation

Soil cover		× 3	
Soil depth		× 2	
Run-off		X 2	
Ranking Score (sum of VS rankings)			

Table 4 allows the farmer to rate the condition of their soil by assigning each indicator a score out of 2. Each indicator is then multiplied by a weight which indicates importance or influence of the indicator to overall soil quality. The scores are summed to give a soil quality assessment. Table 6 below is an example of such a checklist. For instance, a soil sample that received scores of 2/2 (Good Condition) for all 8 categories above would receive a score of 34 (>25), meaning that the soil quality is "good".

Table 4: Soil Quality Assessment Table. Mahlathini Development Foundation

Soil Quality Assessment	Ranking score
Poor	< 10
Moderate	10 - 25
Good	> 25

The full manual can be found in the appendix section. (Appendix 1).

The Mahlathini Visual Soil Assessment Manual will be used in this study as a qualitative assessment tool. This tool will be used to evaluate soil quality in-field and assign soil quality scores to each sample. Samples will then be ranked for comparison with the results form Objective 1: Quantitative soil Quality Assessments.

The relationship between qualitative and quantitative methods of assessing soil quality will be established using the Kendall Rank Correlation Coefficient.

Palesa has finalised her literature review and methodology and is to commence with field work in May-June 2018.

9.4 Publications and networking

- Publications:
 - Adaptation network newsletter; 2 articles CA SFIP and CSA impact
 - SA Grain Newsletter; CA SFIP, 2 smallholder case studies (Ixopo, Bergville)
 - Africanfarming.com; Feature CA in smallholder farming systems
- Cross visits:
 - \circ $\,$ DARD and MDF: Lesotho cross visit _CA
 - GrainSA FDP and ARC- SGI_CA and implementation methodology
 - USAID, Ukuvuna, SANBI _Community based CCA in Mametje
- Attendance:

Mahlathini Development Foundation

- Rangeland Management learning exchange_UCPP_Matatiele
- Regenerative Agriculture_ GrainSA_Reitz
- Presentations:
 - CA learning groups and farmer centres presentation Ubuhlebezwe LM Agricultural Forum, DRDLR (KZN), Umgungundlovu DM, GrainSA farmers days (x5)
 - Madzikane stakeholder forum, Agroecology network, Unmovtho Buboni Learning Network,